Подпишись и читай
самые интересные
статьи первым!

Дыхательная цепь реакции биохимия. Короткая дыхательная цепь. Последовательность и строение переносчиков электронов в дыхательной цепи

Компонентами дыхательной цепи являются ферментные белки с относительно прочно связанными низкомолекулярными простетическими группами. Такие комплексы у эукариот локализуются во внутренней стороне мембраны митохондрий, а у прокариот – в плазматической мембране. Механизм действия и локализация компонентов дыхательной цепи в тех и других мембранах во многом сходны.

Компоненты дыхательной цепи погружены в двойной липидный слой. Речь идет о большом числе ферментов, коферментов и простетических групп, различных дегидрогеназ и транспортных систем, участвующих в переносе электронов и водорода. Белковые компоненты могут быть выделены из мембраны. Дыхательные цепи микроорганизмов состоят из следующих важнейших, локализованных в мембране, переносчиков атомов водорода или электронов: флавопротеинов, железосерных белков, хинонов и цитохромов.

Флавопротеины – коферменты, в состав которых входит витамин В2, а в качестве простетических групп в них выступают флавинмононуклеотид (ФМН) или флавинадениндинуклеотид (ФАД).

Флавопротеины осуществляют перенос атомов водорода, т. е. являются дегидрогеназами. Дегидрогеназа, которая содержит в качестве простетической группы ФМН, является НАДФ · Н2-дегидрогеназой. Это стартовый переносчик в дыхательной цепи, осуществляющий перенос водорода с НАДФ · Н2 на следующие компоненты дыхательной цепи. Дегидрогеназа, содержащаяся в качестве простетической группы ФАД, действует как сукцинатдегидрогеназа. Она катализирует окисление янтарной кислоты в фумаровую в ЦТК. Атомы водорода от ФАД · Н2 поступают сразу на хиноны, локализованные на последних этапах электронтранспортной цепи.

Железосерные белки (FeS-белки) содержат железосероцентры, в которых атомы железа связаны, с одной стороны, с серой аминокислоты цистеина, а с другой – с неорганической сульфидной серой (рис. 4).

Железосероцентры входят в состав некоторых флавопротеинов (например, сукцинатдегидрогеназы и НАДФ · Н2-дегидрогеназы), или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат большое число FeS-центров. Железосероцентры, в зависимости от строения, могут осуществлять одновременный перенос одного или двух электронов, что связано с изменением валентности атомов железа.

Рис. 4. Железосероцентры (FeS-центры) белков

Хиноны – жирорастворимые соединения. У грамотрицательных бактерий они представлены убихиноном (кофермент Q) или менахиноном (рис. 5).

Рис. 5. Хиноны грамотрицательных бактерий: А – кофермент Q (убихинон); Б – менахинон

Хиноны липофильны и поэтому локализуются в липидной фазе мембраны. Они переносят атомы водорода. По сравнению с другими компонентами дыхательной цепи, хиноны содержатся в 10–15-кратном избытке. Они служат «сборщиками» водорода, поставляемого различными коферментами и простетическими группами в дыхательной цепи, и передают его цитохромам. Таким образом, они функционируют в дыхательной цепи на участке между флавопротеинами и цитохромами.

Цитохромы принимают участие на заключительном этапе в цепи переноса электронов. К ним электроны поступают от хинонов. В качестве простетической группы цитохромы содержат гем. Цитохромы окрашены; они отличаются друг от друга спектрами поглощения и окислительно-восстановительными потенциалами. Различают цитохромы а , а 3 , b , c , o и ряд других. Наиболее широко распространен цитохром с . Он найден почти у всех организмов, обладающих дыхательной цепью. Конечные (терминальные) цитохромы дыхательной цепи – это цитохромы а + а 3 или цитохромоксидаза. Они передают электроны на молекулярный кислород, т. е. катализируют восстановление молекулярного кислорода до воды. В реакционном центре цитохромоксидазы, помимо двух гемов, содержатся два атома меди.

Дыхательная цепь имеет следующие особенности:

1) Одни ее компоненты переносят только атомы водорода, а другие – только электроны.

2) Переносчики атомов водорода и переносчики электронов последовательно чередуются в дыхательной цепи. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы – электронов.

3) В составе дыхательных цепей у микроорганизмов выявлены определенные различия.

Окисление субстратов в процессе дыхания можно представить как перенос электронов и протонов (т. е. атомов водорода) от органических веществ на кислород. В этом процессе участвует ряд промежуточных переносчиков, образующих дыхательную цепь.

Дыхательная цепь (электронотранспортная цепь, цепь переноса электронов ) - система трансмембранных белков и переносчиков электронов, которые передают электроны от субстратов на кислород. В клетках эукариот дыхательная цепь расположена во внутренней мембране митохондрий.

При взаимодействии НАД + и НАДФ + с атомами водорода происходит обратимое присоединение атомов водорода.

В молекулу НАД + (НАДФ +) включаются 2 электрона и один протон, второй протон остается в среде:

Другим первичным источником атомов водорода и электронов служит восстановленный флавопротеин (ФАД или ФМН):

Восстановленные формы этих кофакторов способны транспортировать водород и электроны к дыхательной цепи митохондрий.

Компоненты дыхательной цепи встроены в митохондриальную мембрану в виде 4 белково-липидных комплексов (рис. 33).

Комплекс I (НАДН-дегидрогеназа) включает ФМН и железосерный белок FeS (негемовое железо). Железосерный белок участвует в окислительно-восстановительном процессе. Комплекс I окисляет НАДН, перенося с него 2 электрона на кофермент Q (KоQ) и перекачивает 4 протона из матрикса в межмембранное пространство митохондрии.

KoQ (убихинон ) - производное бензохинона. Это некрупная липофильная молекула. Перемещаясь в липидном слое мембраны, убихинон обеспечивает передачу электронов между комплексами I - III и II - III.

Комплекс II (сукцинат-дегидрогеназа) включает ФАД и железосерный белок . Обеспечивает вход в цепь дополнительных электронов за счет окисления сукцината.

Комплекс III (QН 2 -дегидрогеназа) включает цитохромы b и с 1 и железосерный белок . Цитохромы - гемопротеины, в которых простетическая геминовая группа близка к гему гемоглобина (у цитохрома b идентична). Комплекс III переносит электроны с убихинона на цитохром с и перекачивает
2 протона в межмембранное пространство.

Комплекс IV (цитохром c оксидаза) состоит из цитохромов a и a 3 , которые, помимо гема, содержат ионы меди . Комплекс IV катализирует перенос электронов с молекул цитохрома на O 2 и перекачивает 4 протона в межмембранное пространство.

Цитохром а 3 - терминальный участок дыхательной цепи (цитохромоксидаза) : происходит окисление цитохрома с и образование воды. В организме человека митохондриальная дыхательная цепь образует 300-400 мл воды за сутки (метаболическая вода).

Компоненты дыхательной цепи митохондрий расположены в порядке убывания окислительно-восстановительного потенциала. Перемещение электронов в дыхательной цепи происходит по градиенту окислительно-восстановительного потенциала и является источником энергии для переноса протонов. Перенос двух электронов через каждый комплекс обеспечивает перекачку четырех протонов. В результате по сторонам мембраны возникает разность концентраций протонов и одновременно разность электрических потенциалов со знаком «плюс» на наружной поверхности. Электрохимический потенциал понуждает протоны двигаться в обратном направлении - с наружной поверхности внутрь. Однако мембрана непроницаема для них, за исключением участков, где располагается фермент протонная АТФ-синтаза (рис. 34).

АТФ-синтаза состоит из двух частей – статора и ротора.

Статор состоит из трех α-субъединиц и трех β-субъединиц – они участвуют непосредственно в синтезе АТФ из АДФ и фосфата. К ним примыкает δ-субъединица, и все вместе они образуют F1-субъединицу.

Ротор состоит из g- и e-субъединиц.

Статор держится в мембране, а ротор вращается за счет энергии протонов.

В статоре имеется протонный канал (F0). Он состоит из двух полуканалов, которые смещены один относительно другого. Протон проходит одну половину канала, затем на вращающемся роторе попадает во вторую половину канала.

Рис. 34. Строение протонной АТФ-синтазы

Движущей силой для АТФ-синтазы, катализирующей реакцию

АДФ + Н 3 РО 4 = АТФ + Н 2 О,

является разность электрохимических потенциалов, создаваемая при движении протонов через канал.

П. Митчелл для объяснения молекулярного механизма сопряжения транспорта электронов и образования АТФ в дыхательной цепи в 1960 г. предложил хемиосмотическую концепцию :в дыхательной цепи есть только 3 участка (комплексы I, III, IV), где перенос электронов сопряжен с накоплением энергии, достаточным для образования АТФ.

Коэффициент фосфорилирования - отношение величины образовавшейся АТФ к поглощенному кислороду: АТФ/О или Р/О . Максимальная величина коэффициента фосфорилирования 3 , если реакция окисления идет с участием НАДН+Н + , и 2 , если окисление субстрата протекает через ФАДН 2 . Реально получаемые величины меньше (2,5 и 1,5), т.е. процесс дыхания не полностью сопряжен с фосфорилированием. Степень сопряжения зависит главным образом от целостности митохондриальной мембраны.

Образующаяся АТФ при участии АДФ-АТФ-транслоказы транспортируется из матрикса на наружную сторону мембраны и попадает в цитозоль. Одновременно та же транслоказа переносит АДФ в обратном направлении, из цитозоля в матрикс митохондрии.

На каждое сокращение сердечной мышцы расходуется около 2% имеющейся в ней АТФ. Вся АТФ израсходовалась бы за 1 мин., если бы не было ее регенерации. При образовании тромба в коронарной артерии поступление кислорода в клетки прекращается, соответственно прекращается и регенерация АТФ, и клетки погибают (инфаркт миокарда ).

Увеличение концентрации АДФ приводит к ускорению дыхания и фосфорилирования. Зависимость интенсивности дыхания митохондрий от концентрации АДФ называют дыхательным контролем.

Для оценки влияния адениловых нуклеотидов на процессы метаболизма используют энергетический заряд клетки (ЭЗК) :

В норме ЭЗК = 0,7-0,8: скорость образования АТФ равна скорости ее использования, адениловая система насыщена энергией.

При ЭЗК < 0,7 ускоряется образование АТФ путем увеличения скорости реакций общего пути катаболизма.

Если ЭЗК = 1, то процессы синтеза АТФ тормозятся и ускоряется ее использование.

Механизм дыхательного контроля характеризуется высокой точностью. Относительные концентрации АТФ и АДФ в тканях изменяются в узких пределах, тогда как потребление энергии клеткой может изменяться в десятки раз.

Т.о., энергия пищевых веществ в клетке трансформируется сначала в энергию АТФ, а затем АТФ служит непосредственным источником энергии для биохимических и физиологических процессов. Эти превращения энергии и есть энергетический обмен .

Гипоэнергетические состояния подразделяются на:

1. Алиментарные (голодание, авитаминоз).

2. Гипоксические. Связаны:

С нарушением поступления кислорода в кровь. Экзогенная гипоксия - недостаток кислорода во вдыхаемом воздухе, легочная (дыхательная) –нарушение легочной вентиляции;

С нарушением транспорта кислорода в крови. Гемодинамическая гипоксия связана с нарушениями кровообращения (генерализованные – пороки сердца, кровопотеря; локальные – спазм сосудов, тромбоз); причины гемоглобиновой гипоксии – гипогемоглобинемия, гемоглобинопатии, блокирование гемоглобина ядами.

3. Митохондриальные. Затруднено использование кислорода в клетках в результате нарушения функций митохондрий ингибиторами ферментов дыхательной цепи, разобщителями окисления и фосфорилирования, мембранотропными веществами.

При полном голодании пищевых резервов организма хватает на несколько недель. При лишении же организма кислорода смерть наступает через 2-3 минуты. Поэтому гипоксия - наиболее частая причина гипоэнергетических состояний, а гипоксия мозга - непосредственная причина смерти. Среди реанимационных процедур ведущее место занимают меры, направленные на восстановление снабжения органов кислородом.

Поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее совершенном виде и единообразии дыхательная цепь предстает у эукариот , где она локализована во внутренней мембране митохондрий . У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании.

Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т.е. виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой ( флавопротеины , FeS-белки , цитохромы) или небелковой ( хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы - электронов.

При изучении дыхательных цепей особенно интересны два связанных с мембраной флавопротеина : сукцинатдегидрогеназа, катализирующая окисление сукцината в ЦТК , и НАД(Ф)*Н2-дегидрогеназа, катализирующая восстановление своей флавиновой простетической группы, сопряженное с окислением НАД(Ф)*Н2.

Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры ( рис. 58). Они входят в состав некоторых флавопротеинов, например сукцинат и НАД(Ф)*Н2-дегидрогеназ, или же служат в качестве единственных простетических групп белков . Дыхательные цепи содержат большое число FeS-центров . В митохондриальной электронтранспортной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения FeS-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа.

Хиноны - жирорастворимые соединения, имеющие длинный терпеноидный "хвост", связанный с хиноидным ядром, способным к обратимому окислению - восстановлению путем присоединения 2 атомов водорода ( рис. 93 , В). Наиболее распространен убихинон , функционирующий в дыхательной цепи на участке между флавопротеинами и цитохромами . В отличие от остальных электронных переносчиков хиноны не связаны со специфическими белками. Небольшой фонд убихинона растворен в липидной фазе мембран.

Цитохромы , принимающие участие на заключительном этапе цепи переноса электронов, представляют собой группу белков, содержащих железопорфириновые простетические группы ( гемы). С помощью цитохромов осуществляется перенос электронов, в процессе которого меняется валентность железа:

Fe++ переходит обратимо в Fe+++ + e

В митохондриях обнаружено пять цитохромов (b, с, с1, а, а3), различающихся между собой спектрами поглощения и окислительно- восстановительными потенциалами. Различия по этим параметрам обусловлены белковыми компонентами цитохромов, природой боковых цепей их порфиринов и способом присоединения гема к белкам. Конечные цитохромы (а+а3) передают электроны на молекулярный кислород, представляя собой собственно цитохромоксидазу, в реакционном центре которой содержатся помимо двух гемов два атома меди. Образование воды имеет место при переносе на молекулу кислорода 4 электронов. Некоторые цитохромоксидазы осуществляют перенос на О2 только 2 электронов, следствием чего является возникновение перекиси водорода . Перекись водорода далее разрушается каталазой или пероксидазой.

Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на О2. Последовательность их расположения, представленная на рис. 94 , подтверждается различного рода данными: значениями окислительно- восстановительных потенциалов переносчиков, ингибиторным анализом.

Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)*Н2- дегидрогеназу. Антимицин A (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому с1. Цианид , окись углерода и азид блокируют конечный этап переноса электронов от цитохромов а+а3 на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтранспортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора - в окисленной форме.

Какие формы организации дыхательной цепи обнаружены у эубактерий, т.е. на определенных подступах к ее окончательному формированию? Группы первично анаэробных хемогетеротрофов не имеют развитой системы связанного с мембранами электронного транспорта. Полностью сформированной системой дыхательного электронного транспорта обладают фотосинтезирующие эубактерии.

Ι. НАДН-убихинон-оксидоредуктаза. Принимает электроны и протоны от НАДН Н+;
протоны выбрасываются в межмембранное пространство, электроны передаются на КоQ.
ΙΙ. Сукцинат-убихинон-оксидоредуктаза. Принимает электроны и протоны от субстратов в матриксе и передает их на убихинон.
Убихинон - липофильная молекула, хинон, легко перемещается по мембране, принимает электроны и протоны от Ι и ΙΙ комплексов дыхательной цепи и передает электроны на ΙΙΙ комплекс.

Цитохромы, входящие в состав дыхательной цепи, представляют собой железосодержащие белки, простетическая группа которых представлена гемом. Цитохромы могут переносить только электроны за счет атома железа с переменной валентностью.

Ш. Убихинол-цитохром с-оксидоредуктаза. Переносит электроны с убихинола на цитохром с. Одновременно за счет энергии, выделившейся при переносе, из матрикса переносятся протоны в межмембранное пространство.
IV. Цитохром с-оксидаза. Переносит электроны с цитохрома с непосредственно на кислород. Цитохромы а и а3, помимо атомов железа, содержат атомы меди, поэтому этот комплекс одновременно осуществляет полное (4-электронное) восстановление молекулы кислорода. Энергия переноса электронов используется на перекачивание в межмембранное пространство протонов.
Как указывалось выше, для синтеза АТФ необходимо затратить около 32 кДж/моль энергии. Для этого достаточной является разность потенциалов между окислителем и восстановителем не менее 0,26 вольта. Чанс, Скулачев установили, что таких участков в дыхательной цепи три. Они соответствуют I, III и IV комплексам и названы пунктами сопряжения или фосфорилирования.
Чтобы понять связь между транспортом электронов по дыхательной цепи и синтезом АТФ, познакомимся с V комплексом внутренней мембраны митохондрий - ферментом, осуществляющим реакцию синтеза АТФ и называемым протонной АТФ-синтазой (см. рис.). Этот ферментативный комплекс состоит из двух частей: Fо (о – олигомицин), который встроен в мембрану и пронизывает ее насквозь, и F1, Последний по форме напоминает шляпку гриба или дверную ручку и обращен в матрикс митохондрии. В изолированном виде F1 не может синтезировать АТФ, но может проводить ее гидролиз до АДФ и фосфата.
Реакция синтеза АТФ, которую проводит V комплекс, носит название окислительного фосфорилирования и описывается уравнением: АДФ + Н3РО4= АТФ + Н2O.
Биохимики долго искали связь - промежуточные макроэргические соединения, которые могли бы служить посредником между процессом тканевого дыхания и окислительным фосфорилированием. Английский биохимик П. Митчелл предположил, что синтез АТФ V комплексом ВММ сопряжен с особым состоянием этой мембраны, и сформулировал хемиоосмотическую теорию окислительного фосфорилирования (Нобелевская премия 1978 г.).
Основные постулаты этой теории:
▪внутренняя митохондриальная мембрана (ВММ) непроницаема для ионов, в частности для Н+и ОН-;
▪за счет энергии транспорта электронов через I, III и IV комплексы дыхательной цепи из матрикса выкачиваются протоны;
▪возникающий на мембране электрохимический потенциал (ЭХП) и есть промежуточная форма запасания энергии;
▪возвращение (транслокация) протонов в матрикс митохондрии через протонный канал V комплекса за счет ЭХП является движущей силой синтеза АТФ.

Дальнейшие исследования (Дж. Уокер, П. Бойер, Нобелевская премия 1997 г.) подтвердили предположения Митчелла. Ими показано, что энергия движения протонов используется на изменения конформации активного центра АТФ-синтазы, что сопровождается синтезом АТФ, а затем ее высвобождением. Образовавшаяся АТФ с помощью транслоказы перемещается в цитозоль; в ответ в матрикс митохондрии поступают АДФ и фосфат. Всего на процесс синтеза, высвобождения и выброса в цитозоль расходуется 4 протона.
При окислении НАД-зависимых субстратов в ММП выбрасывается 10 протонов (см. схему комплексов дыхательной цепи). Следовательно, в таком случае может быть синтезировано 2,5 моль АТФ (10:4), т. е. коэффициент фосфорилирования Р/О = 2,5. При окислении ФАД-зависимых субстратов в ММП выбрасывается 6 протонов в III и IV пунктах сопряжения. В таком случае может быть синтезировано 1,5 моль АТФ (6:4), т. е. коэффициент фосфорилирования Р/О = 1,5.
Теперь можно вернуться к пониманию энергетической функции цикла Кребса (см. предыдущую лекцию). В ЦТК происходят 4 реакции дегидрирования, причем 3 ДГ являются НАД-зависимыми и одна - ФАД-зависимой. За счет окисления водорода 3-х молекул НАДН.Н+ в дыхательной цепи синтезируется 7,5 моль АТФ, окисление водорода 1 моль ФАДН2 ведет к синтезу 1,5 моль АТФ. Помимо этого, в ЦТК имеет место одна реакция субстратного фосфорилирования. Таким образом, энергетический выход окисления ацетил-КоА в цикле Кребса равен 10 моль АТФ (7,5 + 1,5 + 1). Этой цифрой мы будем пользоваться в дальнейших расчетах.
Регулируется скорость работы дыхательной цепи энергетическим зарядом клетки, т. е. соотношением АТФ/АДФ. АДФ является стимулятором дыхательной цепи, АТФ – аллостерическим ингибитором.
Гипоэнергетические состояния возникают в организме вследствие дефицита АТФ в клетках. Причины их следующие:
алиментарные (голодание, гиповитаминозы РР, В2); гипоксические (нарушения доставки О2 в клетки); митохондриальные (действие ингибиторов и разобщителей).
Среди последних различают, во-первых, ингибиторы дыхательной цепи. Это яды,
которые блокируют перенос электронов через I, II, III, IV комплексы. Ротенон и барбитураты блокируют I комплекс, малонат - II, антимицин А – III, цианиды, угарный газ блокируют перенос электронов на кислород, осуществляемый IV комплексом дыхательной цепи.

Во-вторых, ингибиторы окислительного фосфорилирования (олигомицин), закрывающие протонный канал V комплекса.
В-третьих, разобщители окислительного фосфорилирования. Это вещества, которые подавляют окислительное фосфорилирование, не влияя при этом на процесс переноса электронов дыхательной цепью. Механизм действия разобщителей сводится к тому, что, являясь липофильными веществами, они обладают способностью связывать протоны и переносить их в матрикс, минуя протонный канал Н+ АТФ-синтазы. Выделяющаяся при переносе электронов энергия рассеивается в виде тепла. Различают:
разобщители естественные (продукты перекисного окисления липидов, жирные кислоты с длинной цепью, белки термогенины буровой жировой ткани, большие дозы йодсодержащих гормонов щитовидной железы);
разобщители искусственные (динитрофенол, производные витамина К, некоторые антибиотики).

Биологическое окисление – совокупность реакций окисления субстратов в живых клетках, основная функция которых – энергетическое обеспечение метаболизма.

Главные функции окислительных процессов:

1) запас энергии в утилизируемой форме,

2) рассеяние энергии в виде теплоты,

3) образование полезных соединений,

4) расщепление вредных веществ.

Различия между биологическим окислением и горением

    Биологическое окисление не является одноступенчатой экзотермической реакцией, а представляет цепь реакций, в течение которых энергия освобождается, рассеивается в виде тепла и аккумулируется в АТФ.

    Биологическое окисление–процесс ферментативный.

    Биологическое окисление протекает при низкой температуре и в присутствии воды.

    При сгорании органических веществ освобождение энергии происходит за счёт окисления углерода до углекислого газа, а при биологическом окислении за счёт окисления водорода, восстановления кислорода до воды.

История развития учения о биологическое окислении.

Оксидазная теория А. Н. Баха

    Путь кислорода воздуха к субстрату лежит через перекись.

    Активирование молекулярного кислорода:

а) оксигеназа + О 2  оксигеназа + перекись

б) оксигеназа + субстрат  оксигеназа + окисленный субстрат.

Теория В. И. Палладина

    Окисление в живом организме идёт путём дегидрирования.

    Акцептором водорода может быть не только кислород, но и другое вещество.

Сущность окисления

    Химические реакции, в процессе которых происходит перенос электрона от одной молекулы к другой, называются окислительно-восстановительными.

    Соединения, отдающие электрон, доноры электрона или восстановители.

    Соединения, присоединяющие электрон,

акцепторы электрона или окислители.

    Окислители и восстановители функционируют как сопряжённые окислительно-восстановительные пары (редокс-пары).

Fe + ē  Fe

окислитель, восстановитель,

акцептор донор

Каждая редокс-пара характеризуется стандартным потенциалом (в вольтах)

Редокс-потенциал

    Редокс-потенциал указывает направление переноса электрона.

    При сравнении редокс-потенциала системы с нормальным водородным электродом, потенциал которого равен нулю, получают величины, отражающие окислительно-восстановительные способности вещества.

Тканевое дыхание – вид биологического окисления, при котором акцептором электрона является кислород

Субстраты тканевого дыхания:

    кислоты цикла Кребса (изоцитрат, а-кетоглутарат, сукцинат, малат),

  • аминокислоты,

    α-глицерофосфат,

    жирные кислоты.

Осуществляется тканевое дыхание с помощью ферментов дыхательной цепи.

Схема превращения энергии в живых клетках: тканевое дыхание, образование АТФ и пути его использования.

С
труктура АТФ

Способы синтеза АТФ

Дыхательная цепь – последовательность оксидоредуктаз во внутренней мембране митохондрий, осуществляющих перенос электронов и протонов от субстрата на молекулярный кислород.

Митохондрия

Перенос электронов и протонов с участием промежуточных переносчиков.

SH2 - исходный донор протонов и электронов;

P1, Р2, Р3, Р4 - промежуточные переносчики;

E1, E2, E3, E4 - ферменты окислительно-восстановительных реакций

    Дыхательная цепь – основной поставщик энергии для синтеза макроэргических связей молекул АТФ в процессе окислительного фосфорилирования.

    Поддержание теплового баланса в организме. 57% энергии выделяется в виде тепла.

Компоненты дыхательной цепи


Водород в дыхательную цепь постыпает в виде в виде НАДН2, так как большинство дегидрогеназ внутри митохондрий НАД-зависимые, а также при действии на субстратфлавиновой дегидрогеназы (кофермент ФАД).

НАД-зависимые дегидрогеназы

    непосредственно от субстрата принимают электроны и протоны:

S -HH +НАД +  S +НАДН+Н +

    коллекторная функция НАД собирает электроны и протоны от субстрата.

    Большинство дегидрогеназ имеют НАД, но может быть и НАДФ (Г-6-ФДГ).

    Часть пиридин-зависимых дегидрогеназ локализована в митохондриях, часть – в цитоплазме.

    Цитозольный и митохондриальный пулы НАД и НАДФ отделены друг от друга митохондриальной мембраной, которая для этих коферментов непроницаема.

Челночные механизмы переносят восстановленные нуклеотиды (НАДН+Н) из цитоплазмы в митохондрии/

    В цитоплазме происходит восстановление оксалоацетата до малата, который проникает в митохондрии.

    В митохондриях под действием митохондриальной МДГ малат переходит в ЩУК, а НАДН+Н передаёт электроны и протоны в дыхательную цепь.

Окислительно-восстано-вительная система дыхательной цепи

Дыхательная цепь включает 4 ферментных комплекса, катализирующих окисление НАДН+Н кислородом.

НАДН-KoQ-редуктаза катализирует перенос электронов от НАДН к KoQ.

    НАДН-дегидрогеназу,

    негемовые FeS – кластеры,

НАДН-дегидрогеназа

    флавопротеин,

    находится во внутренней мембране митохондрий.

    Коферментом является ФМН, который принимает электроны от НАДН+Н.

ФМН + НАДН+Н  ФМНН 2 +НАД

В FeS – белках железо связано с остатком серы.

Сукцинат-KoQ-редуктаза катализирует перенос электронов от сукцината к KoQ

Этот комплекс включает в себя:

    негемовое Fe,

СДГ- флавопротеин,

прочно связан с внутренней мембраной митохондрий.

Коферментом является ФАД.

KoQ (убихинон)

    Источники убихинона – витамины К и Е.

    KoQ расположен в дыхательной цепи между флавиновыми ферментами и цитохромами.

KoQ + ФМНН 2  KoQН 2 + ФМН

Убихинон – коллектор, так как собирает восстановленные

эквиваленты не только от НАДН-ДГ, но и от СДГ

и других компонентов.

KoQН2 – цитохром С–редуктаза катализирует перенос электронов от KoQН2 к цитохрому

Комплекс включает в себя:

    цитохром В,

    цитохром С1,

    негемовое Fe,

Цитохромы – сложные железосодержащие белки, окрашенные в красный цвет.

Кофермент аналогичен гему, но железо в цитохромах меняет валентность.

Впервые описаны Мак-Мунном, изучены Кейлиным.

Цитохромы переносят электроны.

Известны 25-30 различных цитохромов, которые отличаются:

    редокс-потенциалом,

    спектром поглощения,

    молекулярным весом,

    растворимостью в воде.

Простетическая группа гема в структуре цитохромов.

Связывание гема с белковой частью цитохрома С


Цитохромоксидаза катализирует перенос электронов от цитохрома С к кислороду.

Комплекс включает в себя:

    цитохром а,

    цитохром а3,

    негемовое Fe,

Цитохромоксидаза отличается от других цитохромов:

    наличие меди,

    реагирует с кислородом,

    протонный насос.

В этом ферменте 4 редокс-центра:

Цитохром С  СuА гем А  гем а 3  СuВ  О 2

Сu + е  Сu

При транспорте одного электрона происходит перенос двух ионов водорода, один из которых используется при восстановлении кислорода до воды, а другой пересекает мембрану.

Кислород, поступающий в митохондрии из крови, связывается с атомом железа в геме цитохрома а.

Затем каждый из атомов молекулы кислорода

присоединяет по 2 электрона и по 2 протона,

превращаясь в молекулу воды.

Протоны поступают из водной среды.

4ē + 4Н + О 2  2Н 2 0

200 – 400 мл воды синтезируется в сутки – эндогенная вода.

    Весь процесс окисления НАДН+Н в дыхательной цепи сопряжён с переносом 10Н с внутренней стороны мембраны наружу.

    В этом процессе участвуют комплексы I, III, IV.

    Комплекс II переносит водород от сукцината к KoQ. Этот комплекс не принимает непосредственного участия в образовании энергии.

Нарушения в работе дыхательной цепи

Состояние фатальной детской митохондриальной миопатии и дисфункции почек.

Связано со снижением активности или полным отсутствием большинства оксидоредуктаз дыхательной цепи.

Порядок распределения ферментов в дыхательной цепи определяется редокс-потенциалом.

    Редокс-потенциал изменяется в цепи, так как электроны теряют свободную энергию, проходя по цепи, переходят на более низкий энергетический уровень.

    Субстрат должен иметь более отрицательный потенциал, чем переносчик-фермент:

    Глюкоза (-0,5 В) включается в самом начале дыхательной цепи.

    Аскорбиновая кислота (+ 0,2 В) включается с цитохрома С1.

    Электроны могут пройти через все переносчики от субстрата к кислороду.

Укороченные цепи

    Сукцинат отдаёт электроны на ФАД  КоQ  цитохромы  О 2 . Редокс-потенциал сукцината -0,13.

    Аминокислоты флавиновые ферменты (оксидазы аминокислот) О 2 Н 2 О 2 .

Ингибиторы дыхания

    Инсектицид ротенон блокирует НАДН-ДГ. Барбитураты блокируют переход от ФП к убихинону.

    Антимицин А блокирует стадию: цитохром В цитохром С.

    Цианиды, угарный газ – ингибиторы цитохромоксидазы. Синильная кислота реагирует с Fe, угарный газ с Fe.

Каскадное выделение энергии в дыхательной цепи

    Прохождение электрона по цепи сопровождается ступенчатым, этапным, дробным выделением энергии.

    Общий перепад энергии в дыхательной цепи от – 0,32 до +0,82 составляет 1,14 В.

    Выделенная каскадно энергия может быть утилизирована.

    Перенос одной пары электронов от НАДН+Н к кислороду даёт 52,6 ккал.

    Поскольку энергия электронов не может «откладываться про запас», она превращается в энергию химических связей АТФ.

Различают 2 типа дыхательных цепей:

    сопряжённые с транспортом энергии,

    несопряжённые с транспортом энергии.

Тканевое дыхание включает:

    отнятие водорода от субстрата,

    многоэтапный процесс переноса электронов на кислород.

Перенос электронов сопровождается уменьшением свободной энергии.

Часть энергии рассеивается в виде тепла, а 40% используется на синтез АТФ.

Включайся в дискуссию
Читайте также
Урок по теме электромагнитное поле электромагнитные волны
Варианты решения уравнений с параметром и модулем
Функции и графики Их графики