Подпишись и читай
самые интересные
статьи первым!

Кто придает постоянную скорость планетам. Космическая скорость

Для определения двух характерных «космических» скоростей, связанных с размерами и полем тяготения некоторой планеты. Планету будем считать одним шаром.

Рис. 5.8. Различные траектории движения спутников вокруг Земли

Первой космической скоростью называют такую горизонтально направленную минимальную скорость, при которой тело могло бы двигаться вокруг Земли по круговой орбите, то есть превратиться в искусственный спутник Земли.

Это, конечно идеализация, во-первых планета не шар, во-вторых, если у планеты есть достаточно плотная атмосфера, то такой спутник - даже если его удастся запустить - очень быстро сгорит. Другое дело, что, скажем спутник Земли, летающий в ионосфере на средней высоте над поверхностью в 200 км имеет радиус орбиты отличающийся от среднего радиуса Земли всего, примерно, на 3 %.

На спутник, движущийся по круговой орбите радиусом (рис. 5.9), действует сила притяжения Земли, сообщающая ему нормальное ускорение

Рис. 5.9. Движение искусственного спутника Земли по круговой орбите

По второму закону Ньютона имеем

Если спутник движется недалеко от поверхности Земли, то

Поэтому для на Земле получаем

Видно,что действительно определяется параметрами планеты:её радиусом и массой.

Период обращения спутника вокруг Земли равен

где - радиус орбиты спутника, а - его орбитальная скорость.

Минимальное значение периода обращения достигается при движении по орбите, радиус которой равен радиусу планеты:

так что первую космическую скорость можно определить и так: скорость спутника на круговой орбите с минимальным периодом обращения вокруг планеты.

Период обращения растет с увеличением радиуса орбиты.

Если период обращения спутника равен периоду обращения Земли вокруг своей оси и их направления вращения совпадают, а орбита расположена в экваториальной плоскости, то такой спутник называется геостационарным .

Геостационарный спутник постоянно висит над одной и той же точкой поверхности Земли (рис. 5.10).

Рис. 5.10. Движение геостационарного спутника

Для того чтобы тело могло выйти из сферы земного притяжения, то есть могло удалиться на такое расстояние, где притяжение к Земле перестает играть существенную роль, необходима вторая космическая скорость (рис. 5.11).

Второй космической скоростью называют наименьшую скорость, которую необходимо сообщить телу, чтобы его орбита в поле тяготения Земли стала параболической, то есть чтобы тело могло превратиться в спутник Солнца.

Рис. 5.11. Вторая космическая скорость

Для того чтобы тело (при отсутствии сопротивления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы кинетическая энергия тела на поверхности планеты была равна (или превосходила) работу, совершаемую против сил земного притяжения. Напишем закон сохранения механической энергии Е такого тела. На поверхности планеты, конкретно - Земли

Скорость получится минимальной,если на бесконечном удалении от планеты тело будет покоиться

Приравнивая эти два выражения,получаем

откуда для второй космической скорости имеем

Для сообщения запускаемому объекту необходимой скорости (первой или второй космической) выгодно использовать линейную скорость вращения Земли, то есть запускать его как можно ближе к экватору, где эта скорость составляет, как мы видели, 463 м/с (точнее 465,10 м/с). При этом направление запуска должно совпадать с направлением вращения Земли - с запада на восток. Легко подсчитать, что таким способом можно выиграть несколько процентов в энергетических затратах.

В зависимости от начальной скорости , сообщаемой телу в точке бросания А на поверхности Земли, возможны следующие виды движения (рис. 5.8 и 5.12):

Рис. 5.12. Формы траектории частицы в зависимости от скорости бросания

Совершенно аналогично рассчитывается движение в гравитационном поле любого другого космического тела,например, Солнца. Чтобы преодолеть силу притяжения светила и покинуть Солнечную систему,объекту,покоящемусю относительно Солнца и находящемуся от него на расстоянии, равном радиусу земной орбиты (см. выше), необходимо сообщить минимальную скорость , определяемую из равенства

где , напомним, это радиус земной орбиты, а - масса Солнца.

Отсюда следует формула, аналогичная выражению для второй космической скорости, где надо заменить массу Земли на массу Солнца и радиус Земли на радиус земной орбиты:

Подчеркнем, что - это минимальная скорость, которую надо придать неподвижному телу, находящемуся на земной орбите, чтобы оно преодолело притяжение Солнца.

Отметим также связь

с орбитальной скоростью Земли . Эта связь, как и должно быть - Земля спутник Солнца, такая же, как и между первой и второй космическими скоростями и .

На практике мы запускаем ракету с Земли, так что она заведомо участвует в орбитальном движении вокруг Солнца. Как было показано выше, Земля движется вокруг Солнца с линейной скоростью

Ракету целесообразно запускать в направлении движения Земли вокруг Солнца.

Скорость, которую необходимо сообщить телу на Земле, чтобы оно навсегда покинуло пределы Солнечной системы, называется третьей космической скоростью .

Скорость зависит от того, в каком направлении космический корабль выходит из зоны действия земного притяжения. При оптимальном запуске эта скорость составляет приблизительно = 6,6 км/с.

Понять происхождение этого числа можно также из энергетических соображений. Казалось бы, достаточно ракете сообщить относительно Земли скорость

в направлении движения Земли вокруг Солнца, и она покинет пределы Солнечной системы. Но это было бы правильно, если бы Земля не имела собственного поля тяготения. Такую скорость тело должно иметь, уже удалившись из сферы земного притяжения. Поэтому подсчет третьей космической скорости очень похож на вычисление второй космической скорости, но с дополнительным условием - тело на большом расстоянии от Земли должно все еще иметь скорость :

В этом уравнении мы можем выразить потенциальную энергию тела на поверхности Земли (второе слагаемое в левой части уравнения) через вторую космическую скорость в соответствии с полученной ранее формулой для второй космической скорости

Отсюда находим

Дополнительная информация

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 325–332 (§61, 62): выведены формулы для всех космических скоростей (включая третью), решены задачи о движении космических аппаратов, законы Кеплера выведены из закона всемирного тяготения.

http://kvant.mirror1.mccme.ru/1986/04/polet_k_solncu.html - Журнал «Квант» - полет космического аппарата к Солнцу (А. Бялко).

http://kvant.mirror1.mccme.ru/1981/12/zvezdnaya_dinamika.html - журнал «Квант» - звездная динамика (А.Чернин).

http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971 г. - стр. 138–143 (§§ 40, 41): вязкое трение, закон Ньютона.

http://kvant.mirror1.mccme.ru/pdf/1997/06/kv0697sambelashvili.pdf - журнал «Квант» - гравитационная машина (А. Самбелашвили).

http://publ.lib.ru/ARCHIVES/B/""Bibliotechka_""Kvant""/_""Bibliotechka_""Kvant"".html#029 - А.В. Бялко «Наша планета - Земля». Наука 1983 г., гл. 1, пункт 3, стр. 23–26 - приводится схема положения солнечной системы в нашей галактике, направления и скорости движения Солнца и Галактики относительно реликтового излучения.

Первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Рассмотрим движение тела в неинерциальной системе отсчета - относительно Земли.

В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10 −11 м?·кг −1 ·с −2),

Первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R?, то

Втора?я косми?ческая ско?рость - наименьшая скорость, которую необходимо придать объекту, масса которого пренебрежимо мала по сравнению с массой небесного тела, для преодоления гравитационного притяжения этого небесного тела и покидания круговой орбиты вокруг него.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты. Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G -гравитационная постоянная, v 2 - вторая космическая скорость.

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке:

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 15. Вывод формул для 1-й и 2-й космических скоростей.:

  1. Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.
  2. 14. Вывод третьего закона Кеплера для кругового движения
  3. 1. Скорость элиминации. Константа скорости элиминации. Время полуэлиминации
  4. 7.7. Формула Релея-Джинса. Гипотеза Планка. Формула Планка
  5. 13. Космическая и авиационная геодезия. Особенности зондирования в водной среде. Системы машинного зрения ближнего радиуса действия.
  6. 18. Этический аспект культуры речи. Речевой этикет и культура общения. Формулы речевого этикета. Этикетные формулы знакомства, представления, приветствия и прощания. «Ты» и «Вы» как формы обращения в русском речевом этикете. Национальные особенности речевого этикета.

Мы – земляне – привыкли, что твердо стоим на земле и никуда не улетаем, а если подкинем какой-нибудь предмет в воздух, то он обязательно упадет на поверхность. Всему виной создаваемое нашей планетой гравитационное поле, которое искривляет пространство-время и заставляет брошенное в сторону, например, яблоко лететь по искривленной траектории и пересечься с Землей.

Гравитационное поле создает вокруг себя любой объект, и у Земли, обладающей внушительной массой, это поле довольно сильно. Именно поэтому строятся мощные многоступенчатые космические ракеты, способные разгонять космические корабли до больших скоростей, которые нужны для преодоления гравитации планеты. Значение этих скоростей и получили названия первая и вторая космические скорости.

Понятие первой космической скорости очень простое – это скорость, которую необходимо придать физическому объекту, чтобы он, двигаясь параллельно космическому телу, не смог на него упасть, но в то же время оставался бы на постоянной орбите.

Формула нахождения первой космической скорости не отличается сложностью: где V G M – масса объекта; R – радиус объекта;

Попробуйте подставить в формулу необходимые значения (G – гравитационная постоянная всегда равна 6,67; масса Земли равна 5,97·10 24 кг, а её радиус 6371 км) и найти первую космическую скорость нашей планеты.

В результате мы получим скорость, равную 7,9 км/с. Но почему, двигаясь именно с такой скоростью, космический аппарат не будет падать на Землю или улетать в космическое пространство? Улетать в космос он не будет из-за того, что данная скорость пока еще слишком мала, чтобы преодолеть гравитационное поле, а вот на Землю он как раз и будет падать. Но только из-за высокой скорости он все время будет «уходить» от столкновения с Землей, продолжая в то же время свое «падение» по круговой орбите, вызванной искривлением пространства.


Это интересно: по такому же принципу «работает» и Международная Космическая Станция. Находящиеся на ней космонавты все время проводят в постоянном и непрекращающемся падении, которое не заканчивается трагически вследствие высокой скорости самой станции, из-за чего та стабильно «промахивается» мимо Земли. Значение скорости рассчитывается исходя из .

Но что делать, если мы захотим, чтобы космический аппарат покинул пределы нашей планеты и не был зависим от ее гравитационного поля? Разогнать его до второй космической скорости! Итак, вторая космическая скорость – это минимальная скорость, которую необходимо придать физическому объекту, чтобы он преодолел гравитационное притяжение небесного тела и покинул его замкнутую орбиту.

Значение второй космической скорости тоже, зависит от массы и радиуса небесного тела, поэтому для каждого объекта она будет своей. Например, чтобы преодолеть гравитационное притяжение Земли, космическому аппарату необходимо набрать минимальную скорость 11.2 км/с, Юпитера — 61 км/с, Солнца — 617,7 км/с.


Вторую космическую скорость(V2) можно рассчитать, используя следующую формулу:

где V – первая космическая скорость; G – гравитационная постоянная; M – масса объекта; R – радиус объекта;

Но если известна первая космическая скорость исследуемого объекта (V1), то задача облегчается в разы, и вторая космическая скорость (V2) быстро находится по формуле:

Это интересно: вторая космическая формула черной дыры больше 299 792 км/ c , то есть больше скорости света. Именно поэтому ничто, даже свет не может вырваться за ее пределы.

Помимо первой и второй комических скоростей существуют третья и четвертая, достичь которых нужно для того, чтобы выйти за пределы нашей Солнечной системы и галактики соответственно.

Иллюстрация: bigstockphoto | 3DSculptor

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

«Физика - 10 класс»

Для решения задач требуется знать закон всемирного тяготения, закон Ньютона, а также связь линейной скорости тел с периодом их обращения вокруг планет. Обратите внимание на то, что радиус траектории спутника всегда отсчитывается от центра планеты.


Задача 1.


Вычислите первую космическую скорость для Солнца. Масса Солнца 2 10 30 кг, диаметр Солнца 1,4 10 9 м.


Р е ш е н и е.


Спутник движется вокруг Солнца под действием единственной силы - силы тяготения. Согласно второму закону Ньютона запишем:

Из этого уравнения определим первую космическую скорость, т. е. минимальную скорость, с которой надо запустить тело с поверхности Солнца, чтобы оно стало его спутником:


Задача 2.


Вокруг планеты на расстоянии 200 км от её поверхности со скоростью 4 км/с движется спутник. Определите плотность планеты, если её радиус равен двум радиусам Земли (R пл = 2R 3).


Р е ш е н и е.


Планеты имеют форму шара, объём которого можно вычислить по формуле тогда плотность планеты


Определите среднее расстояние от Сатурна до Солнца, если период обращения Сатурна вокруг Солнца равен 29,5 лет. Масса Солнца равна 2 10 30 кг.


Р е ш е н и е.


Считаем, что Сатурн движется вокруг Солнца по круговой орбите. Тогда согласно второму закону Ньютона запишем:

где m - масса Сатурна, r - расстояние от Сатурна до Солнца, М с - масса Солнца.

Период обращения Сатурна отсюда

Подставив выражение для скорости υ в уравнение (4), получим

Из последнего уравнения определим искомое расстояние от Сатурна до Солнца:

Сравнив с табличными данными, убедимся в правильности найденного значения.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Динамика - Физика, учебник для 10 класса - Класс!ная физика

Нашей планеты. Объект при этом будет двигаться неравномерно и неравноускоренно. Это происходит потому, что ускорение и скорость в данном случае не будут удовлетворять условиям с постоянной по направлению и величине скоростью/ускорением. Эти два вектора (скорости и ускорения) по мере движения по орбите будут всё время менять свое направление. Поэтому такое движение иногда называют движением с постоянной скоростью по круговой орбите

Первая космическая - скорость, которую нужно придать телу, чтобы вывести его на круговую орбиту. При этом оно станет подобно Другими словами, первая космическая - скорость, достигнув которую тело, движущееся над поверхностью Земли, не упадёт на неё, а будет продолжать движение по орбите.

Для удобства вычислений можно рассматривать это движение как происходящее в неинерциальной системе отсчета. Тогда тело на орбите можно будет считать находящимся в состоянии покоя, так как на него будут действовать две и тяготения. Следовательно, первая будет вычисляться, исходя из рассмотрения равенства этих двух сил.

Рассчитывается она по определённой формуле, в которой учитывается масса планеты, масса тела, гравитационная постоянная. Подставив известные значения в определённую формулу, получают: первая космическая скорость - 7,9 километров в секунду.

Кроме первой космической существуют вторая и третья скорости. Каждая из космических скоростей вычисляется по определённым формулам и интерпретируется физически как скорость, при которой любое тело, запускаемое с поверхности планеты Земля, становится либо искусственным спутником (это произойдет при достижении первой космической скорости), либо выходит из поля тяготения Земли (это происходит при достижении второй космической скорости), либо уйдёт из Солнечной системы, преодолевая притяжение Солнца (это происходит при третьей космической скорости).

Набрав скорость, равную 11,18 километров в секунду (вторая космическая), может лететь в сторону планет в Солнечной системе: Венеры, Марса, Меркурия, Сатурна, Юпитера, Нептуна, Урана. Но чтобы достичь какой-либо из них, нужно учитывать их движение.

Раньше учёные полагали, что движение планет равномерное и происходит по окружности. И только И. Кеплер установил настоящую форму их орбит и закономерность, по которой изменяются скорости движения небесных тел при их вращении вокруг Солнца.

Понятие космической скорости (первой, второй или третьей) применяется при расчёте движения искусственного тела в любой планеты или её естественного спутника, а также Солнца. Так можно определить космическую скорость, например, для Луны, Венеры, Меркурия и других небесных тел. Эти скорости должны вычисляться по формулам, в которых учитывается масса небесного тела, силу тяготения которой нужно преодолеть

Третья космическая может быть определена исходя из условия, что космический аппарат должен иметь по отношению к Солнцу параболическую траекторию движения. Для этого во время запуска у поверхности Земли и на высоте около двухсот километров его скорость должна быть равной примерно 16,6 километров в секунду.

Соответственно космические скорости могут быть рассчитаны также и для поверхностей других планет и их спутников. Так, например, для Луны первая космическая составит 1,68 километров в секунду, вторая — 2,38 километров в секунду. Вторая космическая скорость для Марса и Венеры, соответственно, равна 5,0 километров в секунду и 10,4 километра в секунду.

Включайся в дискуссию
Читайте также
Бухучет инфо Где находится акт сверки в 1с
Где в 1 с 8.3 учетная политика. Учетная политика организаций в зависимости от системы налогообложения. Внесение дополнений и изменений в учетную политику
Как закрыть счет 90.09 вручную. Закрытие месяца: проводки и примеры. Прибыль отражается проводкой