Подпишись и читай
самые интересные
статьи первым!

Оксид хлора 7 какой. Бизнес-план с детскими игровыми автоматами. Диспропорционирование хлора в воде и водных растворах щелочей

Коды производителя

Состав

Содержит водный гипохлорит кальция, нестабилизированный хлор.

Фасовка

Упаковка по 25 кг.

Свойства

    Пастилки примерно по 7 гр. растворяются быстро.

    Формула содержит устойчивое по отношению к хлору средство от известковых налетов.

    При использовании не образует пыли.

    Полностью исключено присутствие изоциануровой кислоты (стабилизатор).

    Совместим с любыми фильтровальными установками.

Назначение

Уничтожают в воде бактерии, вирусы и грибки. Служат заправкой для hth Дозатора Easiflo.

Способ применения

В ЧАСТНЫХ БАССЕЙНАХ

hth BRIQUETTE 7G помещать в скиммер(ы) из расчета 20 пастилок на 10 куб. м. воды, при условии, что скиммер(ы) не содержат стабилизированного хлора. Вслед за этим (примерно каждые 4-5 дней) добавлять пастилки таким образом, чтобы содержание свободного хлора удерживалось на уровне 2 мг/л (определять с помощью таблеток DPD1).
Ежедневное потребление препарата - от 150 до 200 гр. на 100 куб. м. воды в зависимости от количества купающихся, освещенности солнцем и волнения воды (горки, противоток…), но потребление может быть сокращено добавкой стабилизатора, особенно в открытых бассейнах.
Идеальное содержание стабилизатора - в пределах от 25 до 50 мг/л.

В ОБЩЕСТВЕННЫХ БАССЕЙНАХ

hth BRIQUETTE 7G предпочтительно вносить с помощью Дозатора Easiflo (см. прилагаемую схему) или использовать дозирующий насос с распределительным баком. Дозатор Easiflo предпочтительнее, поскольку вмещает 15 кг препарата и обеспечивает более длительную автономность процесса, в то время как распределительный бак может вместить только 1 - 1,5 кг. hth Пастилок хлора 7 гр.
Ежедневное потребление препарата - от 0,5 до 1,0 кг. на 100 куб. м. воды в зависимости от количества купающихся, освещенности солнцем и волнения воды (горки, противоток…). Потребление препарата может быть сокращено добавкой стабилизатора, особенно в открытых бассейнах.
Следует постоянно контролировать содержание активного хлора, поддерживая его в пределах от 0,4 до 1,4мг/л. Если вода в бассейне стабилизирована, содержание свободного хлора следует поддерживать как минимум на уровне 2 мг/л, а содержание стабилизатора не должно превышать 75 мг/л (идеально: от 25 до 50 мг/л).
Уровень рН всегда должен быть в пределах от 7,0 до 7,4.

    Способствует воспламенению горючих материалов.

    В случае попадания в организм оказывает вредное воздействие.

    При контакте с кислотой выделяет токсичный газ.

    Вызывает ожоги.

    Крайне токсичен для обитающих в воде организмов.

    В случае попадания в глаза немедленно промыть большим количеством воды и обратиться к врачу.

    Одевать соответствующую защитную одежду, перчатки и маску для защиты глаз и лица.

    При несчастных случаях и недомоганиях немедленно обратиться к врачу (при наличии этикетки показать ее врачу).

    Избегать выброса в окружающую среду. Следовать специальным инструкциям по безопасности.

О - поддерживает горение

С - вызывает коррозию и ожоги

N - опасно для окружающей среды

Условия хранения

    Хранить под замком, в недоступном для детей месте.

    Длительное хранение - в сухом месте при температуре не выше 40°C.

Взаимодействие с другими продуктами

Внимание: Не использовать в сочетании с другими препаратами, т. к. возможно выделение опасных газов (хлора).

Описание продукта

«Сухая» альтернатива жидкому и газообразному хлору

hth BRIQUETTE 7G Пастилки для Eeasiflo представляют собой специальную запатентованную смесь гипохлорита кальция с содержанием свободного хлора 68%. Это сухой, твердый продукт, содержащий добавку, которая эффективно препятствует образованию известковых отложений, связанных с растворами гипохлорита кальция. Пастилки имеют постоянную скорость растворения и обеспечивают устойчивое, однородное хлорирование воды бассейна. Простые в использовании hth Пастилки для Eeasiflo хранятся в легких пластмассовых ведрах или пластмассовых контейнерах. При сравнении сезонного объема потребления, для Пастилок Eeasiflo требуется в 6 раз меньше складской площади, чем для жидкого хлора (гипохлорита натрия). Пастилки Eeasiflo имеют длительный срок хранения (2 года при нормальных условиях), поддерживая при этом 97 % от своего начального потенциала. Для сравнения: жидкий хлор (гипохлорит натрия) может потерять целых 33 % через один месяц хранения.

Химический состав

Описание преимуществ

Существенная экономия на ремонте бассейна

Воде вашего бассейна требуется кальций. Вода с низким содержанием кальция и карбонатов становится агрессивной и ищет вещества, в которых испытывает недостаток, в межплиточном растворе и облицовке. В результате этого происходит интенсивное вымывание раствора, разъедается облицовка, происходит точечная коррозия и повреждение оборудования. hth Пастилки Eeasiflo поддерживает баланс кальция/карбонатов в воде, что существенно уменьшает повреждения, наносимые внутренней поверхности чаши бассейна и оборудованию.

Пастилки хлора 7 г повышают pH фактор воды в бассейне, помогая тем самым предотвратить коррозию, вызванную низким уровнем pH. С пастилками Eeasiflo на внутренних поверхностях металлического оборудования бассейна образуется микроскопический слой карбоната кальция, который обеспечивает дополнительную защиту от коррозии. Удобные в использовании hth Пастилки Eeasiflo позволяют избегать опасных пролитий, которые могут случиться при использовании жидкого хлора (гипохлорита натрия). Не будет больше разъедаемых труб, насосов, фильтров и кранов или повреждений облицовки. В результате использования Системы Eeasiflo значительно увеличивается срок службы оборудования и чаши бассейна, сокращаются текущие затраты и затраты на обслуживание бассейна.

Сокращение необходимости регуляции баланса воды

Бассейны, использующие hth Пастилки Eeasiflo требуют меньшей регуляции pH фактора, щелочности и кальциевой жесткости, делающей эти параметры более легкими для контроля, чем в бассейнах, использующих гипохлорит натрия. Пастилками Eeasiflo требуется меньше кислоты для управления pH фактором. В бассейнах, использующих гипохлорит натрия зачастую требуется в 2,5 раза больше кислоты, чтобы поддерживать рН в требуемых пределах, из-за каустических стабилизаторов, содержащихся в гипохлорите натрия.

Сокращение потребление натрия

Натрий является основным донором для наращиванию TDS (Общего содержания растворимых солей). В связи с тем, что жидкий хлор (гипохлорит натрия) очень быстро теряет свою силу, в воду бассейна приходится добавлять больше жидкости (содержащей большое количество соли), чтобы достигнуть необходимого уровня свободного хлора. Показателями увеличения уровня TDS служат частая потребность смены воды в бассейне, мутная вода, коррозия и соленый привкус. При использовании Пастилок Eeasiflo в воде накапливается меньше половины того количества TDS, которое мы имеем с гипохлоритом натрия.

Снижение эксплуатационных затрат

Общая стоимость химических препаратов и воды при использовании Системы Eeasiflo может быть меньше чем половина той же стоимости использования жидкого хлора (гипохлорита натрия). Если к тому же учесть уменьшение в стоимости обслуживания и ремонт бассейна, выбор ясен: hth BRIQUETTE 7G для Eeasiflo является наиболее рентабельной системой дезинфекции воды.

15.1. Общая характеристика галогенов и халькогенов

Галогены ("рождающие соли") – элементы VIIA группы. К ним относятся фтор, хлор, бром и йод. В эту же группу входит и неустойчивый, а потому не встречающийся в природе астат. Иногда к этой группе относят и водород.
Халькогены ("рождающие медь") – элементы VIA группы. К ним относятся кислород, сера, селен, теллур и практически не встречающийся в природе полоний.
Из восьми существующих в природе атомов элементов этих двух групп наиболее распространены атомы кислорода (w = 49,5 %), за ним по распространенности следуют атомы хлора (w = 0,19 %), далее – серы (w = 0,048 %), затем – фтора (w = 0,028 %). Атомов остальных элементов в сотни и тысячи раз меньше. Кислород вы уже изучали в восьмом классе (гл. 10), из остальных элементов наиболее важными являются хлор и сера – с ними вы и познакомитесь в этой главе.
Орбитальные радиусы атомов галогенов и халькогенов невелики и лишь у четвертых атомов каждой группы приближаются к одному ангстрему. Это приводит к тому, что все эти элементы, представляют собой элементы, образующие неметаллы и только теллур и йод проявляют некоторые признаки амфотерности.
Общая валентная электронная формула галогенов – ns 2 np 5 , а халькогенов – ns 2 np 4 . Маленькие размеры атомов не позволяют им отдавать электроны, напротив, атомы этих элементов склонны их принимать, образуя однозарядные (у галогенов) и двухзарядные (у халькогенов) анионы. Соединяясь с небольшими атомами, атомы этих элементов образуют ковалентные связи. Семь валентных электронов дают возможность атомам галогенов (кроме фтора) образовывать до семи ковалентных связей, а шесть валентных электронов атомов халькогенов – до шести ковалентных связей.
В соединениях фтора – самого электроотрицательного элемента – возможна только одна степень окисления, а именно –I. У кислорода, как вы знаете, максимальная степень окисления +II. У атомов остальных элементов высшая степень окисления равна номеру группы.

Простые вещества элементов VIIA группы однотипны по строению. Они состоят из двухатомных молекул. При обычных условиях фтор и хлор – газы, бром – жидкость, а йод – твердое вещество. По химическим свойствам эти вещества сильные окислители. Из-за роста размеров атомов с увеличением порядкового номера их окислительная активность снижается.
Из простых веществ элементов VIA группы при обычных условиях газообразны только кислород и озон, состоящие из двухатомных и трехатомных молекул, соответственно; остальные – твердые вещества. Сера состоит из восьмиатомных циклических молекул S 8 , селен и теллур из полимерных молекул Se n и Te n . По своей окислительной активности халькогены уступают галогенам: сильным окислителем из них является только кислород, остальные же проявляют окислительные свойства в значительно меньшей степени.

Состав водородных соединений галогенов (НЭ) полностью отвечает общему правилу, а халькогены, кроме обычных водородных соединений состава H 2 Э, могут образовывать и более сложные водородные соединения состава Н 2 Э n цепочечного строения. В водных растворах и галогеноводороды, и остальные халькогеноводороды проявляют кислотные свойства. Их молекулы – частицы-кислоты. Из них сильными кислотами являются только HCl, HBr и HI.
Для галогенов образование оксидов нехарактерно, большинство из них неустойчиво, однако высшие оксиды состава Э 2 О 7 известны для всех галогенов (кроме фтора, кислородные соединения которого не являются оксидами). Все оксиды галогенов – молекулярные вещества, по химическим свойствам – кислотные оксиды.
В соответствии со своими валентными возможностями халькогены образуют два ряда оксидов: ЭО 2 и ЭО 3 . Все эти оксиды кислотные.

Гидроксиды галогенов и халькогенов представляют собой оксокислоты.

Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов VIA и VIIA групп. Укажите внешние и валентные электроны.

Хлор самый распространенный, а потому и важнейший из галогенов.
В земной коре хлор встречается в составе минералов: галита (каменной соли) NaCl, сильвина KCl, карналлита KCl·MgCl 2 ·6H 2 O и многих других. Основной промышленный способ получения – электролиз хлоридов натрия или калия.

Простое вещество хлор – газ зеленоватого цвета с едким удушающим запахом. При –101 °С конденсируется в желто-зеленую жидкость. Хлор весьма ядовит, во время первой мировой войны его даже пытались использовать в качестве боевого отравляющего вещества.
Хлор – один из самых сильных окислителей. Он реагирует с большинством простых веществ (исключение: благородные газы, кислород, азот, графит, алмаз и некоторые другие). В результате образуются галогениды:
Cl 2 + H 2 = 2HCl (при нагревании или на свету);
5Cl 2 + 2P = 2PCl 5 (при сжигании в избытке хлора);
Cl 2 + 2Na = 2NaCl (при комнатной температуре);
3Cl 2 + 2Sb = 2SbCl 3 (при комнатной температуре);
3Cl 2 + 2Fe = 2FeCl 3 (при нагревании).
Кроме того хлор может окислять и многие сложные вещества, например:
Cl 2 + 2HBr = Br 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + 2HI = I 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + H 2 S = 2HCl + S (в растворе);
Cl 2 + 2KBr = Br 2 + 2KCl (в растворе);
Cl 2 + 3H 2 O 2 = 2HCl + 2H 2 O + O 2 (в концентрированном растворе);
Cl 2 + CO = CCl 2 O (в газовой фазе);
Cl 2 + C 2 H 4 = C 2 H 4 Cl 2 (в газовой фазе).
В воде хлор частично растворяется (физически), а частично обратимо реагирует с ней (см. § 11.4 в). С холодным раствором гидроксида калия (и любой другой щелочи) аналогичная реакция протекает необратимо:

Cl 2 + 2OH = Cl + ClO + H 2 O.

В результате образуется раствор хлорида и гипохлорита калия. В случае реакции с гидроксидом кальция образуется смесь CaCl 2 и Ca(ClO) 2 , называемая хлорной известью.

С горячими концентрированными растворами щелочей реакция протекает иначе:

3Cl 2 + 6OH = 5Cl + ClO 3 + 3H 2 O.

В случае реакции с KOH так получают хлорат калия, называемый бертолетовой солью.
Хлороводород – единственное водородное соединение хлора. Этот бесцветный газ с удушающим запахом хорошо растворим в воде (нацело реагирует с ней, образуя ионы оксония и хлорид-ионы (см. § 11.4). Его раствор в воде называют соляной или хлороводородной кислотой. Это один из важнейших продуктов химической технологии, так как расходуется соляная кислота во многих отраслях промышленности. Огромное значение она имеет и для человека, в частности потому, что содержится в желудочном соке, способствуя перевариванию пищи.
Хлороводород раньше получали в промышленности, сжигая хлор в водороде. В настоящее время потребность в соляной кислоте почти полностью удовлетворяется за счет использования хлороводорода, образующегося в качестве побочного продукта при хлорировании различных органических веществ, например, метана:

CH 4 + Cl 2 = CH 3 + HCl

И лаборатории хлороводород получают из хлорида натрия, обрабатывая его концентрированной серной кислотой:
NaCl + H 2 SO 4 = HCl + NaHSO 4 (при комнатной температуре);
2NaCl + 2H 2 SO 4 = 2HCl + Na 2 S 2 O 7 + H 2 O (при нагревании).
Высший оксид хлора Cl 2 O 7 – бесцветная маслянистая жидкость, молекулярное вещество, кислотный оксид. В результате реакции с водой образует хлорную кислоту HClO 4 , единственную оксокислоту хлора, существующую как индивидуальное вещество; остальные оксокислоты хлора известны только в водных растворах. Сведения об этих кислотах хлора приведены в таблице 35.

Таблица 35.Кислоты хлора и их соли

С/O
хлора

Формула
кислоты

Название
кислоты

Сила
кислоты

Название
солей

хлороводородная

хлорноватистая

гипохлориты

хлористая

хлорноватая

перхлораты

Большинство хлоридов растворимо в воде. Исключение составляют AgCl, PbCl 2 , TlCl и Hg 2 Cl 2 . Образование бесцветного осадка хлорида серебра при добавлении к исследуемому раствору раствора нитрата серебра – качественная реакция на хлорид-ион:

Ag + Cl = AgCl

Из хлоридов натрия или калия в лаборатории можно получить хлор:

2NaCl + 3H 2 SO 4 + MnO 2 = 2NaHSO 4 + MnSO 4 + 2H 2 O + Cl 2

В качестве окислителя при получении хлора по этому способу можно использовать не только диоксид марганца, но и KMnO 4 , K 2 Cr 2 O 7 , KClO 3 .
Гипохлориты натрия и калия входят в состав различных бытовых и промышленных отбеливателей. Хлорная известь также используется как отбеливатель, кроме того ее используют как дезинфицирующее средство.
Хлорат калия используют в производстве спичек, взрывчатых веществ и пиротехнических составов. При нагревании он разлагается:
4KClO 3 = KCl + 3KClO 4 ;
2KClO 3 = 2KCl + O 2 (в присутствии MnO 2).
Перхлорат калия тоже разлагается, но при более высокой температуре: KClO 4 = KCl + 2O 2 .

1.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения.
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) хлора, б) хлороводорода (и соляной кислоты), в) хлорида калия и г) хлорида бария.
Химические свойства соединений хлора

В различны условиях устойчивы различные аллотропные модификации элемента сера. При обычных условиях простое вещество сера представляет собой желтое хрупкое кристаллическое вещество, состоящее из восьмиатомных молекул:

Это так называемая ромбическая сера (или -сера) S 8 .(Название происходит от кристаллографического термина, характеризующего симметрию кристаллов этого вещества). При нагревании она плавится (113 °С), превращаясь в подвижную желтую жидкость, состоящую из таких же молекул. При дальнейшем нагревании происходит разрыв циклов и образование очень длинных полимерных молекул – расплав темнеет и становится очень вязким. Это так называемая -сера S n . Кипит сера (445 °С) в виде двухатомных молекул S 2 , аналогичных по строению молекулам кислорода. Строение этих молекул также, как и молекул кислорода, не может быть описано в рамках модели ковалентной связи. Кроме того существуют и другие аллотропные модификации серы.
В природе встречаются месторождения самородной серы, из которых ее и добывают. Большая часть добываемой серы используется для производства серной кислоты. Часть серы используют в сельском хозяйстве для защиты растений. Очищенная сера применяется в медицине для лечения кожных заболеваний.
Из водородных соединений серы наибольшее значение имеет сероводород (моносульфан) H 2 S. Это бесцветный ядовитый газ с запахом тухлых яиц. В воде он малорастворим. Растворение физичекое. В незначительной степени в водном растворе происходит протолиз молекул сероводорода и в еще меньшей степени – образующихся при этом гидросульфид-ионов (см. приложение 13). Тем не менее, раствор сероводорода в воде называют сероводородной кислотой (или сероводородной водой).

На воздухе сероводород сгорает:

2H 2 S + 3O 2 = 2H 2 O + SO 2 (при избытке кислорода).

Качественной реакцией на присутствие сероводорода в воздухе служит образование черного сульфида свинца (почернение фильтровальной бумажки, смоченной раствором нитрата свинца:

H 2 S + Pb 2 + 2H 2 O = PbS + 2H 3O

Реакция протекает в этом направлении из-за очень малой растворимости сульфида свинца.

Кроме сероводорода, сера образует и другие сульфаны H 2 S n , например, дисульфан H 2 S 2 , аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS 2 .

В соответствии с валентными возможностями своих атомов сера образует два оксида : SO 2 и SO 3 . Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты .
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами.
Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O;
2KBr + 3H 2 SO 4 = 2KHSO 4 + Br 2 + SO 2 + 2H 2 O.

Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией .
Будучи двухосновной кислотой, серная кислота образует два ряда солей : средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Современные промышленные методы производства серной кислоты основаны на получении диоксида серы (1-й этап), окислении его в триоксид (2-й этап) и взаимодействии триоксида серы с водой (3-й) этап.

Диоксид серы получают сжигая в кислороде серу или различные сульфиды:

S + O 2 = SO 2 ;
4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Процесс обжига сульфидных руд в цветной металлургии всегда сопровождается образованием диоксида серы, который и идет на производство серной кислоты.
В обычных условиях окислить кислородом диоксид серы невозможно. Окисление проводят при нагревании в присутствии катализатора – оксида ванадия(V) или платины. Несмотря на то, что реакция

2SO 2 + O 2 2SO 3 + Q

обратима, выход достигает 99 %.
Если пропускать образующуюся газовую смесь триоксида серы с воздухом через чистую воду, большая часть триоксида серы не поглощается. Чтобы предотвратить потери, газовую смесь пропускают через серную кислоту или ее концентрированные растворы. При этом образуется дисерная кислота:

SO 3 + H 2 SO 4 = H 2 S 2 O 7 .

Раствор дисерной кислоты в серной называют олеумом и часто представляют как раствор триоксида серы в серной кислоте.
Разбавляя олеум водой, можно получить как чистую серную кислоту, так и ее растворы.

1.Cоставьте структурные формулы
а) диоксида серы, б) триоксида серы,
в) серной кислоты, г) дисерной кислоты.

Как бы мы негативно ни относились к общественным уборным, природа диктует свои правила, и посещать их приходится. Помимо естественных (для данного места) запахов, еще одним привычным ароматом является хлорка, используемая для дезинфекции помещения. Свое название она получила из-за главного действующего вещества в ней - Cl. Дайте узнаем об этом химическом элементе и его свойствах, а также дадим характеристику хлора по положению в периодической системе.

Как был открыт этот элемент

Впервые хлорсодержащее соединение (HCl) было синтезировано в 1772 г. британским священником Джозефом Пристли.

Через 2 года его шведский коллега Карл Шееле сумел описать способ выделения Cl с помощью реакции между соляной кислотой и диоксидом марганца. Однако этот химик так и не понял, что в результате синтезируется новый химический элемент.

Почти 40 лет понадобилось ученым, чтобы научиться добывать хлор на практике. Впервые это было сделано британцем Гемфри Дэви в 1811 г. При этом он использовал другую реакцию, нежели его предшественники-теоретики. Дэви при помощи электролиза разложил на составляющие NaCl (известный большинству как кухонная соль).

Изучив полученное вещество, британский химик осознал, что оно является элементарным. После этого открытия Дэви не только назвал его - chlorine (хлорин), но и смог дать характеристику хлора, правда она была весьма примитивной.

Хлорин превратился в хлор (chlore) благодаря Жозефу Гей-Люссаку и в таком виде существует в французском, немецком, российском, белорусском, украинском, чешском, болгарском и некоторых других языках и сегодня. В английском по сей день употребляется название "хлорин", а в итальянском и испанском "хлоро".

Более подробно рассматриваемый элемент был описан Йенсом Берцелиусом в 1826 г. Именно он смог определить его атомную массу.

Что такое хлор (Cl)

Рассмотрев историю открытия данного химического элемента, стоит узнать о нем подробнее.

Название chlorine было образовано от греческого слова χλωρός («зеленый»). Дано оно было из-за желтовато-зеленоватого цвета данного вещества

Самостоятельно хлор существует как двухатомный газ Cl 2, однако в таком виде в природе он практически не встречается. Чаще он фигурирует в различных соединениях.

Помимо отличительного оттенка, для хлора характерен сладковато-едкий запах. Он является очень ядовитым веществом, поэтому при попадании в воздух и вдыхании человеком или животным способен в течение нескольких минут привести к их гибели (зависит от концентрации Cl).

Поскольку хлор тяжелее воздуха почти в 2,5 раза, он всегда будет находиться ниже его, то есть у самой земли. По этой причине при подозрении на наличие Cl следует забраться как можно выше, так как там будет меньшая концентрация данного газа.

Также, в отличие от некоторых других ядовитых веществ, хлорсодержащие обладают характерным цветом, что может позволить зрительно их идентифицировать и принять меры. Большинство стандартных противогазов помогают защитить органы дыхания и слизистые оболочки от поражения Cl. Однако для полной безопасности нужно принимать более серьезные меры, вплоть до нейтрализации ядовитого вещества.

Стоит отметить, что именно с применения немцами хлора как отравляющего газа в 1915 г. начало свою историю химическое оружие. В результате использования почти 200 тонн вещества было за несколько минут отравлено 15 тысяч человек. Треть из них умерла почти мгновенно, треть получила перманентные повреждения, и лишь 5 тысячам удалось спастись.

Почему же столь опасное вещество до сих пор не запрещено и ежегодно добывается миллионами тонн? Все дело в его особых свойствах, а чтобы понять их, стоит рассмотреть характеристику хлора. Проще всего это сделать с помощью таблицы Менделеева.

Характеристика хлора в периодической системе


Хлор как галоген

Помимо крайней токсичности и едкого запаха (характерных для всех представителей данной группы) Cl отлично растворяется в воде. Практическое подтверждение этому - добавление хлорсодержащих моющих средств в воду для бассейнов.

При контакте с влажным воздухом рассматриваемое вещество начинает дымиться.

Свойства Cl как неметалла

Рассматривая химическую характеристику хлора, стоит обратить внимание на его неметаллические свойства.

Он имеет способность образовывать соединения практически со всеми металлами и неметаллами. В качестве примера можно привести реакцию с атомами железа: 2Fe + 3Cl 2 → 2FeCl 3.

Часто для проведения реакций необходимо использовать катализаторы. В этой роли может выступать Н 2 О.

Нередко реакции с Cl носят эндотермический характер (поглощают тепло).

Стоит отметить, что в кристаллической форме (в виде порошка) хлор взаимодействует с металлами лишь при нагревании до высоких температур.

Реагируя с другими неметаллами (кроме О 2 , N, F, С и инертных газов), Cl образует соединения - хлориды.

При реакции с О 2 образуются крайне нестабильные и склонные к распаду оксиды. В них степень окисления Cl способна проявляться от +1 до +7.

При взаимодействии с F образуются фториды. Степень окисления их может быть разной.

Хлор: характеристика вещества с точки зрения его физических свойств

Помимо химических свойств, рассматриваемый элемент имеет и физические.


Влияние температуры на агрегатное состояние Cl

Рассмотрев физическую характеристику элемента хлора, мы понимаем, что он способен переходить в разные агрегатные состояния. Все зависит от температурного режима.

В нормальном состоянии Cl - это газ, обладающий высокими коррозийными свойствами. Однако он с легкостью способен сжижаться. На это влияет температура и давление. К примеру, если оно равно 8 атмосферам, а температура - +20 градусам по Цельсию, Cl 2 - кислотно-желтая жидкость. Данное агрегатное состояние он способен сохранять до +143 градусов, если давление также продолжает повышаться.

При достижении -32 °С состояние хлора перестает зависеть от давления, и он продолжает оставаться жидким.

Кристаллизация вещества (твердое состояние) происходит при -101 градусе.

Где в природе существует Cl

Рассмотрев общую характеристику хлора, стоит узнать, где же в природе может встречаться столь непростой элемент.

Из-за своей высокой реакционной активности он практически никогда не встречается в чистом виде (поэтому в начале изучения учеными этого элемента понадобились годы, чтобы научиться его синтезировать). Обычно Cl находится в составе соединений в различных минералах: галит, сильвин, каинит, бишофит и т. п.

Более всего он содержится в солях, добытых из морской или океанической воды.

Влияние на организм

При рассмотрении характеристики хлора уже было не раз сказано, что он крайне ядовит. При этом атомы вещества содержатся не только в минералах, но и практически во всех организмах, начиная от растений до человека.

Из-за особых свойств ионы Cl лучше других проникают сквозь мембраны клеток (поэтому более 80 % всего хлора в теле человека находится в межклеточном пространстве).

Вместе с К, Cl ответственен за регуляцию водно-солевого баланса и как следствие - за осмотическое равенство.

Несмотря на столь важную роль в организме, в чистом виде Cl 2 убивает все живое - от клеток до целых организмов. Однако в контролированных дозах и при кратковременном воздействии он не успевает причинить повреждений.

Ярким примером последнему утверждению служит любой бассейн. Как известно, воду в таких учреждениях дезинфицируют при помощи Cl. При этом, если человек редко посещает такое заведение (раз в неделю или в месяц) - маловероятно, что он пострадает от наличия данного вещества в воде. Однако работники таких учреждений, особенно те, кто почти весь день пребывают в воде (спасатели, инструкторы) часто страдают кожными заболеваниями или имеют ослабленный иммунитет.

В связи со всем этим после посещения бассейнов обязательно нужно принять душ - чтобы смыть возможные остатки хлора с кожи и волос.

Использования Cl человеком

Помня из характеристики хлора, что он является «капризным» элементом (когда дело доходит до взаимодействия с другими веществами), интересно будет узнать, что в промышленности он весьма часто используется.

В первую очередь с его помощью производится дезинфекция многих веществ.

Также Cl применяется при изготовлении некоторых видов пестицидов, что помогает спасать урожай от вредителей.

Способность этого вещества взаимодействовать почти со всеми элементами таблицы Менделеева (характеристика хлора как неметалла) помогает с его помощью добывать некоторые виды металлов (Ті, Та и Nb), а также известь и соляную кислоту.

Помимо всего вышеперечисленного Cl применяют при производстве промышленных веществ (поливинилхлорид) и медицинских препаратов (хлоргексидин).

Стоит упомянуть, что сегодня найдено более эффективное и безопасное дезинфицирующее средство - озон (О 3 ). Однако его производство более дорогостоящее, чем хлора, и этот газ еще более нестабилен, нежели хлор (краткая характеристика физических свойств в 6-7 п.). Поэтому применять озонирование вместо хлорирования пока могут позволить себе немногие.

Как добывается хлор

Сегодня известно немало способов для синтеза данного вещества. Все они делятся на две категории:

  • Химические.
  • Электрохимические.

В первом случае Cl получают вследствие химической реакции. Однако на практике они весьма затратные и малопроизводительны.

Поэтому в промышленности предпочитают электрохимические методы (электролиз). Их три: диафрагменный, мембранный и ртутный электролиз.

Хлор, вероятно, получали еще алхимики, но его открытие и первое исследование неразрывно связано с именем знаменитого шведского химика Карла Вильгельма Шееле . Шееле открыл пять химических элементов – барий и марганец (совместно с Юханом Ганом), молибден, вольфрам, хлор, а независимо от других химиков (хотя и позже) – еще три: кислород, водород и азот. Это достижение впоследствии не смог повторить ни один химик. При этом Шееле, уже избранный членом Шведской королевской академии наук, был простым аптекарем в Чёпинге, хотя мог занять более почетную и престижную должность. Сам Фридрих II Великий , прусский король, предлагал ему занять пост профессора химии Берлинского университета. Отказываясь от подобных заманчивых предложений, Шееле говорил: «Я не могу есть больше, чем мне нужно, а того, что я зарабатываю здесь в Чёпинге, мне хватает на пропитание».

Многочисленные соединения хлора были известны, конечно, задолго до Шееле. Этот элемент входит в состав многих солей, в том числе и самой известной – поваренной соли. В 1774 Шееле выделил хлор в свободном виде, нагревая черный минерал пиролюзит с концентрированной соляной кислотой: MnO 2 + 4HCl ® Cl 2 + MnCl 2 + 2H 2 O.

Вначале химики рассматривали хлор не как элемент, а как химическое соединение неизвестного элемента мурия (от латинского muria – рассол) с кислородом. Считалось, что и соляная кислота (ее называли муриевой) содержит химически связанный кислород. Об этом «свидетельствовал», в частности, такой факт: при стоянии раствора хлора на свету из него выделялся кислород, а в растворе оставалась соляная кислота. Однако многочисленные попытки «оторвать» кислород от хлора ни к чему не привели. Так, никому не удалось получить углекислый газ, нагревая хлор с углем (который при высоких температурах «отнимает» кислород от многих содержащих его соединений). В результате подобных опытов, проведенных Гемфри Дэви, Жозеф Луи Гей-Люссаком и Луи Жаком Тенаром, стало ясно, что хлор не содержит кислорода и является простым веществом. К тому же выводу привели и опыты Гей-Люссака, который проанализировал количественное соотношение газов в реакции хлора с водородом.

В 1811 Дэви предложил для нового элемента название «хлорин» – от греч. «хлорос» – желто-зеленый. Именно такой цвет имеет хлор. Этот же корень – в слове «хлорофилл» (от греч. «хлорос» и «филлон» – лист). Спустя год Гей-Люссак «сократил» название до «хлора». Но до сих пор англичане (и американцы) называют этот элемент «хлорином» (chlorine), тогда как французы – хлором (chlore). Приняли сокращенное название и немцы – «законодатели» химии на протяжении почти всего 19 в. (по-немецки хлор – Chlor). В 1811 немецкий физик Иоганн Швейгер предложил для хлора название «галоген» (от греческих «халс» – соль, и «геннао» – рождаю). Впоследствии этот термин закрепился не только за хлором, но и за всеми его аналогами по седьмой группе – фтором, бромом, иодом, астатом.

Интересна демонстрация горения водорода в атмосфере хлора: иногда во время опыта возникает необычный побочный эффект: раздается гудение. Чаще всего пламя гудит, когда тонкую трубку, по которой подается водород, опускают в заполненный хлором сосуд конической формы; то же справедливо для сферических колб, а вот в цилиндрах пламя обычно не гудит. Это явление назвали «поющим пламенем».

В водном растворе хлор частично и довольно медленно реагирует с водой; при 25° С равновесие: Cl 2 + H 2 O HClO + HCl устанавливается в течение двух суток. Хлорноватистая кислота на свету разлагается: HClO ® HCl + O. Именно атомарному кислороду приписывают отбеливающий эффект (абсолютно сухой хлор такой способностью не обладает).

Хлор в своих соединениях может проявлять все степени окисления – от –1 до +7. С кислородом хлор образует ряд оксидов, все они в чистом виде нестабильны и взрывоопасны: Cl 2 O – желто-оранжевый газ, ClO 2 – желтый газ (ниже 9,7 о С – яркокрасная жидкость), перхлорат хлора Cl 2 O 4 (ClO–ClO 3 , светло-желтая жидкость), Cl 2 O 6 (O 2 Cl–O–ClO 3 , ярко-красная жидкость), Cl 2 O 7 – бесцветная очень взрывчатая жидкость. При низких температурах получены нестабильные оксиды Cl 2 O 3 и ClO 3 . Оксид ClO 2 производится в промышленном масштабе и используется вместо хлора для отбеливания целлюлозы и обеззараживания питьевой воды и сточных вод. С другими галогенами хлор образует ряд так называемых межгалогенных соединений, например, ClF, ClF 3 , ClF 5 , BrCl, ICl, ICl 3 .

Хлор и его соединения с положительной степенью окисления – сильные окислители. В 1822 немецкий химик Леопольд Гмелин путем окисления хлором получил из желтой кровяной соли красную: 2K 4 + Cl 2 ® K 3 + 2KCl. Хлор легко окисляет бромиды и хлориды с выделением в свободном виде брома и иода.

Хлор в разных степенях окисления образует ряд кислот: HCl – хлороводородная (соляная, соли – хлориды), HClO – хлорноватистая (соли – гипохлориты), HClO 2 – хлористая (соли – хлориты), HClO 3 – хлорноватая (соли – хлораты), HClO 4 – хлорная (соли – перхлораты). В чистом виде из кислородных кислот устойчива только хлорная. Из солей кислородных кислот практическое применение имеют гипохлориты, хлорит натрия NaClO 2 – для отбеливания тканей, для изготовления компактных пиротехнических источников кислорода («кислородные свечи»), хлораты калия (бертолетова соль), кальция и магния (для борьбы с вредителями сельского хозяйства, как компоненты пиротехнических составов и взрывчатых веществ, в производстве спичек), перхлораты – компоненты взрывчатых веществ и пиротехнических составов; перхлорат аммония – компонент твердых ракетных топлив.

Хлор реагирует со многими органическими соединениями. Он быстро присоединяется к непредельным соединениям с двойными и тройными углерод-углеродными связями (реакция с ацетиленом идет со взрывом), а на свету – и к бензолу. При определенных условиях хлор может замещать атомы водорода в органических соединениях: R–H + Cl 2 ® RCl + HCl. Эта реакция сыграла значительную роль в истории органической химии. В 1840-х французский химик Жан Батист Дюма обнаружил, что при действии хлора на уксусную кислоту с удивительной легкостью идет реакция

СН 3 СООН + Cl 2 ® CH 2 ClCOOH + HCl. При избытке хлора образуется трихлоруксусная кислота ССl 3 СООН. Однако многие химики отнеслись к работе Дюма недоверчиво. Ведь согласно общепринятой тогда теории Берцелиуса положительно заряженные атомы водорода не могли заместиться отрицательно заряженными атомами хлора. Этого мнения придерживались в то время многие выдающиеся химики, среди которых были Фридрих Вёлер, Юстус Либих и, конечно, сам Берцелиус.

Чтобы высмеять Дюма, Вёлер передал своему другу Либиху статью от имени некоего Ш.Виндлера (Schwindler – по-немецки мошенник) о новом удачном приложении якобы открытой Дюма реакции. В статье Вёлер с явной издёвкой написал о том, как в уксуснокислом марганце Mn(CH 3 COO) 2 удалось все элементы, в соответствии с их валентностью, заместить на хлор, в результате чего получилось желтое кристаллическое вещество, состоящее из одного только хлора. Далее говорилось, что в Англии, последовательно замещая в органических соединениях все атомы на атомы хлора, обычные ткани превращают в хлорные, и что при этом вещи сохраняют свой внешний вид. В сноске было указано, что лондонские лавки бойко торгуют материалом, состоящим из одного хлора, так как этот материал очень хорош для ночных колпаков и теплых подштанников.

Реакция хлора с органическими соединениями приводит к образованию множества хлорорганических продуктов, среди которых – широко применяющиеся растворители метиленхлорид CH 2 Cl 2 , хлороформ CHCl 3 , четыреххлористый углерод CCl 4 , трихлорэтилен CHCl=CCl 2 , тетрахлорэтилен C 2 Cl 4 . В присутствии влаги хлор обесцвечивает зеленые листья растений, многие красители. Этим пользовались еще в XVIII в. для отбеливания тканей.

Хлор как отравляющий газ.

Получивший хлор Шееле отметил его очень неприятный резкий запах, затруднение дыхания и кашель. Как потом выяснили, человек чувствует запах хлора даже в том случае, если в одном литре воздуха содержится лишь 0,005 мг этого газа, и при этом он уже оказывает раздражающее действие на дыхательные пути, разрушая клетки слизистой оболочки дыхательных путей и легких. Концентрация 0,012 мг/л переносится с трудом; если же концентрация хлора превышает 0,1 мг/л, он становится опасным для жизни: дыхание учащается, становится судорожным, а затем – все более редким, и уже через 5–25 минут происходит остановка дыхания. Предельно допустимой в воздухе промышленных предприятий считается концентрация 0,001 мг/л, а в воздухе жилых районов – 0,00003 мг/л.

Петербургский академик Товий Егорович Ловиц, повторяя в 1790 опыт Шееле, случайно выпустил значительное количество хлора в воздух. Вдохнув его, он потерял сознание и упал, потом в течение восьми дней страдал от мучительной боли в груди. К счастью, он выздоровел. Чуть не умер, отравившись хлором, и знаменитый английский химик Дэви. Опыты даже с небольшим количеством хлора опасны, так как могут вызвать сильное поражение легких. Рассказывают, что немецкий химик Эгон Виберг одну из своих лекций о хлоре начал словами: «Хлор – ядовитый газ. Если я отравлюсь во время очередной демонстрации, вынесите меня, пожалуйста, на свежий воздух. Но лекцию при этом придется, к сожалению, прервать». Если же выпустить в воздух много хлора, он становится настоящим бедствием. Это испытали на себе во время Первой мировой войны англо-французские войска. Утром 22 апреля 1915 германское командование решило провести первую в истории войн газовую атаку: когда ветер подул в сторону противника, на небольшом шестикилометровом участке фронта в районе бельгийского городка Ипр были одновременно открыты вентили 5730 баллонов, каждый из которых содержал 30 кг жидкого хлора. В течение 5 минут образовалось огромное желто-зеленое облако, которое медленно уходило от немецких окопов в сторону союзников. Английские и французские солдаты оказались полностью беззащитными. Газ проникал через щели во все укрытия, от него не было спасения: ведь противогаз еще не был изобретен. В результате было отравлено 15 тысяч человек, из них 5 тысяч – насмерть. Через месяц, 31 мая немцы повторили газовую атаку на восточном фронте – против русских войск. Это произошло в Польше у города Болимова. На фронте 12 км из 12 тысяч баллонов было выпущено 264 тонны смеси хлора со значительно более ядовитым фосгеном (хлорангидридом угольной кислоты COCl 2). Царское командование знало о том, что произошло при Ипре, и тем не менее русские солдаты не имели никаких средств защиты! В результате газовой атаки потери составили 9146 человек, из них только 108 – в результате ружейного и артиллерийского обстрела, остальные были отравлены. При этом почти сразу же погибло 1183 человека.

Вскоре химики указали, как спасаться от хлора: надо дышать через марлевую повязку, пропитанную раствором тиосульфата натрия (это вещество применяется в фотографии, его часто называют гипосульфитом). Хлор очень быстро реагирует с раствором тиосульфата, окисляя его:

Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ® 2H 2 SO 4 + 2NaCl + 6HCl. Конечно, серная кислота тоже не безвредное вещество, но ее разбавленный водный раствор намного менее опасен, чем ядовитый хлор. Поэтому у тиосульфата в те годы появилось еще одно название – «антихлор», но первые тиосульфатные противогазы были мало эффективны.

В 1916 русский химик, будущий академик Николай Дмитриевич Зелинский изобрел действительно эффективный противогаз, в котором ядовитые вещества задерживали слоем активированного угля. Такой уголь с очень развитой поверхностью мог задержать значительно больше хлора, чем пропитанная гипосульфитом марля. К счастью, «хлорные атаки» остались лишь трагическим эпизодом в истории. После мировой войны у хлора остались только мирные профессии.

Применение хлора.

Ежегодно во всем мире получают огромные количества хлора – десятки миллионов тонн. Только в США к концу 20 в. ежегодно путем электролиза получали около 12 млн. тонн хлора (10-е место среди химических производств). Основная его масса (до 50%) расходуется на хлорирование органических соединений – для получения растворителей, синтетического каучука, поливинилхлорида и других пластмасс, хлоропренового каучука, пестицидов, лекарственных средств, многих других нужных и полезных продуктов. Остальное потребляется для синтеза неорганических хлоридов, в целлюлозно-бумажной промышленности для отбеливания древесной пульпы, для очистки воды. В сравнительно небольших количествах хлор используют в металлургической промышленности. С его помощью получают очень чистые металлы – титан, олово, тантал, ниобий. Сжиганием водорода в хлоре получают хлороводород, а из него – соляную кислоту. Хлор применяют также для производства отбеливающих веществ (гипохлоритов, хлорной извести) и обеззараживания воды хлорированием.

Илья Леенсон

В природе хлор встречается в газообразном состоянии и только в виде соединений с другими газами. В условиях, приближенных к нормальным, это ядовитый едкий газ зеленоватого цвета. Имеет больший вес, чем воздух. Обладает сладким запахом. Молекула хлора содержит два атома. В спокойном состоянии не горит, но при высоких температурах входит во взаимодействие с водородом, после чего возможен взрыв. В результате выделяется газ фосген. Очень ядовит. Так, даже при малой концентрации в воздухе (0,001 мг на 1 дм 3) может вызвать летальный исход. хлора гласит, что он тяжелее воздуха, следовательно, всегда будет находиться у самого пола в виде желтовато-зеленой дымки.

Исторические факты

Впервые на практике это вещество было получено К. Шелее в 1774 г. путем соединения соляной кислоты и пиролюзита. Однако лишь в 1810 г. П. Дэви смог дать характеристику хлору и установить, что это отдельный химический элемент.

Стоит отметить, что в 1772 г. смог получить хлороводород - соединение хлора с водородом, однако разделить эти два элемента химик не смог.

Химическая характеристика хлора

Хлор - химический элемент основной подгруппы VII группы таблицы Менделеева. Находится в третьем периоде и имеет атомный номер 17 (17 протонов в атомном ядре). Химически активный неметалл. Обозначается буквами Cl.

Является типичным представителем газы, не имеющие цвета, но обладающие резким едким запахом. Как правило, токсичны. Все галогены хорошо разбавляются в воде. При контакте с влажным воздухом начинают дымиться.

Внешняя электронная конфигурация атома Cl 3s2Зр5. Следовательно, в соединениях химический элемент проявляет уровни окисления -1,+1, +3, +4, +5, +6 и +7. Ковалентный радиус атома 0,96Å, ионный радиус Cl- 1.83 Å, сродство атома к электрону 3,65 эв, уровень ионизации 12,87 эв.

Как указано выше, хлор представляет собой довольно активный неметалл, что позволяет создавать соединения практически с любыми металлами (в отдельных случаях при помощи нагревания или с помощью влаги, вытесняя при этом бром) и неметаллами. В порошкообразной форме реагирует с металлами только под действием высоких температур.

Максимальная температура горения - 2250 °С. С кислородом способен образовывать оксиды, гипохлориты, хлориты и хлораты. Все соединения, содержащие кислород, становятся взрывоопасными в условиях взаимодействия с окисляющимися веществами. Стоит отметить, что могут произвольно взрываться, в то время как хлораты взрываются лишь при воздействии на них какими-либо инициаторами.

Характеристика хлора по положению в периодической системе:

Простое вещество;
. элемент семнадцатой группы периодической таблицы;
. третий период третьего ряда;
. седьмая группа главной подгруппы;
. атомный номер 17;
. обозначается символом Cl;
. химически активный неметалл;
. находится в группе галогенов;
. в условиях, приближенных к нормальным, это ядовитый газ желтовато-зелёного цвета с едким запахом;
. молекула хлора имеет 2 атома (формула Cl 2).

Физические свойства хлора:

Температура кипения: -34,04 °С;
. температура плавления: -101,5 °С;
. плотность в газообразном состоянии - 3 ,214 г/л;
. плотность жидкого хлора (в период кипения) - 1,537 г/см 3 ;
. плотность твердого хлора - 1,9 г/см 3 ;
. удельный объем - 1,745 х 10 -3 л/г.

Хлор: характеристика температурных изменений

В газообразном состоянии имеет свойство легко сжижаться. При давлении в 8 атмосфер и температуре 20 °С выглядит как зеленовато-желтая жидкость. Обладает очень высокими коррозионными свойствами. Как показывает практика, этот химический элемент может сохранять жидкое состояние вплоть до критической температуры (143 °С), при условии увеличения давления.

Если его охладить до температуры -32 °С, он изменит свое на жидкое вне зависимости от атмосферного давления. При дальнейшем понижении температуры происходит кристаллизация (при показателе -101 °С).

Хлор в природе

В земной коре хлора содержится всего 0,017 %. Основная масса находится в вулканических газах. Как указано выше, вещество имеет большую химическую активность, вследствие чего в природе встречается в соединениях с другими элементами. При этом множество минералов содержат хлор. Характеристика элемента позволяет образовывать порядка ста различных минералов. Как правило, это хлориды металлов.

Также большое его количество находится в Мировом океане - почти 2 %. Это обусловлено тем, что хлориды очень активно растворяются и разносятся с помощью рек и морей. Возможен и обратный процесс. Хлор вымывается обратно на берег, а далее ветер разносит его по окрестностям. Именно поэтому наибольшая его концентрация наблюдается в прибрежных зонах. В засушливых районах планеты рассматриваемый нами газ образуется при помощи испарения воды, вследствие чего появляются солончаки. Ежегодно в мире добывают порядка 100 млн тонн данного вещества. Что, впрочем, неудивительно, ведь существует много месторождений, содержащих хлор. Характеристика его, однако, во многом зависит именно от его географического положения.

Методы получения хлора

Сегодня существует ряд методов получения хлора, из которых наиболее распространены следующие:

1. Диафрагменный. Является самым простым и менее затратным. Соляной раствор в диафрагменном электролизе поступает в пространство анода. Далее по стальной катодной сетке перетекает в диафрагму. В ней находится небольшое количество полимерных волокон. Важной особенностью этого устройства является противоток. Он направлен из анодного пространства в катодное, что позволяет отдельно получить хлор и щелоки.

2. Мембранный. Наиболее энергоэффективен, но сложноосуществим в организации. Схож с диафрагменным. Различие состоит в том, что анодное и катодное пространства полностью разделены мембраной. Следовательно, на выходе получаются два отдельных потока.

Стоит отметить, что характеристика хим. элемента (хлора), полученного данными методами, будет иной. Более "чистым" принято считать мембранный метод.

3. Ртутный метод с жидким катодом. По сравнению с остальными технологиями, этот вариант позволяет получать наиболее чистый хлор.

Принципиальная схема установки состоит из электролизера и соединенных между собой насоса и разлагателя амальгамы. В качестве катода служит перекачиваемая насосом ртуть вместе с раствором поваренной соли, а в качестве анода - угольные или графитовые электроды. Принцип действия установки следующий: из электролита выделяется хлор, который отводится из электролизера вместе с анолитом. Из последнего удаляют примеси и остатки хлора, донасыщают галитом и снова возвращают на электролиз.

Требования промышленной безопасности и нерентабельность производства привели к замене жидкого катода твердым.

Применение хлора в промышленных целях

Свойства хлора позволяют активно применять его в промышленности. С помощью этого химического элемента получают различные (винилхлорид, хлоро-каучук и др.), лекарственные препараты, дезинфицирующие средства. Но самая большая ниша, занятая в промышленности, это производство соляной кислоты и извести.

Широко применяются методы очищения питьевой воды. На сегодняшний день пытаются отойти от этого метода, заменив его озонированием, поскольку рассматриваемое нами вещество негативно влияет на организм человека, к тому же хлорированная вода разрушает трубопроводы. Вызвано это тем, что в свободном состоянии Cl пагубно влияет на трубы, изготовленные из полиолефинов. Тем не менее большинство стран отдает предпочтение именно методу хлорирования.

Также хлор применяется в металлургии. С его помощью получают ряд редких металлов (ниобий, тантал, титан). В химической промышленности активно используют различные хлорорганические соединения для борьбы против сорняков и для других сельскохозяйственных целей, используется элемент и в качестве отбеливателя.

Благодаря своей химической структуре хлор разрушает большинство органических и неорганических красителей. Достигается это путем полного их обесцвечивания. Такой результат возможен лишь при условии присутствия воды, ведь процесс обесцвечивания происходит благодаря который образуется после распада хлора: Cl 2 + H 2 O → HCl + HClO → 2HCl + O. Данный способ нашел применение пару веков назад и пользуется популярностью и по сей день.

Очень популярно применение этого вещества для получения хлорорганических инсектицидов. Эти сельскохозяйственные препараты убивают вредоносные организмы, оставляя нетронутыми растения. Значительная часть всего добываемого на планете хлора уходит на сельскохозяйственные нужды.

Также используется он при производстве пластикатов и каучука. С их помощью изготавливают изоляцию проводов, канцелярские товары, аппаратуру, оболочки бытовой техники и т. д. Бытует мнение, что каучуки, полученные таким образом, вредят человеку, но это не подтверждено наукой.

Стоит отметить, что хлор (характеристика вещества была подробно раскрыта нами ранее) и его производные, такие как иприт и фосген, применяются и в военных целях для получения боевых отравляющих средств.

Хлор как яркий представитель неметаллов

Неметаллы - простые вещества, которые включают в себя газы и жидкости. В большинстве случаев они хуже проводят электрический ток, чем металлы, и имеют существенные различия в физико-механических характеристиках. При помощи высокого уровня ионизации способны образовывать ковалентные химические соединения. Ниже будет дана характеристика неметалла на примере хлора.

Как уже было сказано выше, этот химический элемент представляет собой газ. В нормальных условиях у него полностью отсутствуют свойства, сходные с таковыми у металлов. Без сторонней помощи не может взаимодействовать с кислородом, азотом, углеродом и др. Свои окислительные свойства проявляет в связях с простыми веществами и некоторыми сложными. Относится к галогенам, что ярко отражается на его химических особенностях. В соединениях с остальными представителями галогенов (бром, астат, йод), вытесняет их. В газообразном состоянии хлор (характеристика его - прямое тому подтверждение) хорошо растворяется. Является отличным дезинфектором. Убивает только живые организмы, что делает его незаменимым в сельском хозяйстве и медицине.

Применение в качестве отравляющего вещества

Характеристика атома хлора позволяет применять его как отравляющее средство. Впервые газ был применен Германией 22.04.1915 г., в ходе Первой мировой войны, вследствие чего погибло порядка 15 тыс. человек. На данный момент как не применяется.

Дадим краткую характеристику химического элемента как удушающего средства. Влияет на организм человека посредством удушения. Сначала оказывает раздражение верхних дыхательных путей и слизистой оболочки глаз. Начинается сильный кашель с приступами удушья. Далее, проникая в легкие, газ разъедает легочную ткань, что приводит к отеку. Важно! Хлор является быстродействующим веществом.

В зависимости от концентрации в воздухе, симптоматика бывает разной. При малом содержании у человека наблюдается покраснение слизистой оболочки глаз, легкая одышка. Содержание в атмосфере 1,5-2 г/м 3 вызывает тяжесть и острые ощущения в груди, резкую боль в верхних дыхательных путях. Также состояние может сопровождаться сильным слезотечением. После 10-15 минут нахождения в помещении с такой концентрацией хлора наступает сильный ожог легких и смерть. При более плотных концентрациях смерть возможна в течение минуты от паралича верхних дыхательных путей.

Хлор в жизни организмов и растений

Хлор входит в состав практически всех живых организмов. Особенность состоит в том, что присутствует он не в чистом виде, а в виде соединений.

В организмах животных и человека ионы хлора поддерживают осмотическое равенство. Вызвано это тем, что они имеют наиболее подходящий радиус для проникновения в мембранные клетки. Наряду с ионами калия Cl регулирует водно-солевой баланс. В кишечнике ионы хлора создают благоприятную среду для действия протеолитических ферментов желудочного сока. Хлорные каналы предусмотрены во многих клетках нашего организма. Посредством их происходит межклеточный обмен жидкостями и поддерживается pH клетки. Порядка 85 % от общего объема этого элемента в организме пребывает в межклеточном пространстве. Выводится из организма по мочеиспускательным каналам. Вырабатывается женским организмом в процессе кормления грудью.

На данном этапе развития тяжело однозначно сказать, какие именно заболевания провоцирует хлор и его соединения. Связано это с недостатком исследований в этой области.

Также ионы хлора присутствуют в клетках растений. Он активно принимает участие в энергетическом обмене. Без этого элемента невозможен процесс фотосинтеза. С его помощью корни активно впитывают необходимые вещества. Но большая концентрация хлора в растениях способна оказывать пагубное влияние (замедление процесса фотосинтеза, остановка развития и роста).

Однако существуют такие представители флоры, которые смогли "подружиться" или хотя бы ужиться с данным элементом. Характеристика неметалла (хлора) содержит такой пункт, как способность вещества окислять почвы. В процессе эволюции упомянутые выше растения, называемые галофитами, заняли пустые солончаки, которые пустовали из-за переизбытка этого элемента. Они впитывают ионы хлора, а после избавляются от них при помощи листопада.

Транспортировка и хранение хлора

Существует несколько способов перемещать и хранить хлор. Характеристика элемента предполагает необходимость специальных баллонов с высоким давлением. Такие емкости имеют опознавательную маркировку - вертикальную зеленую линию. Ежемесячно баллоны необходимо тщательно промывать. При длительном хранении хлора в них образуется очень взрывоопасный осадок - трихлорид азота. При несоблюдении всех правил безопасности возможно самопроизвольное воспламенение и взрыв.

Изучение хлора

Будущим химикам должна быть известна характеристика хлора. По плану 9-классники могут даже ставить лабораторные опыты с этим веществом на основе базовых знаний по дисциплине. Естественно, преподаватель обязан провести инструктаж по технике безопасности.

Порядок работ следующий: необходимо взять колбу с хлором и насыпать в неё мелкую металлическую стружку. В полете стружка вспыхнет яркими светлыми искрами и одновременно образуется легкий белый дым SbCl 3 . При погружении в сосуд с хлором оловянной фольги она также самовоспламенится, а на дно колбы медленно опустятся огненные снежинки. Во время этой реакции образуется дымная жидкость - SnCl 4 . При помещении железной стружки в сосуде образуются красные «капли» и появится рыжий дым FeCl 3 .

Наряду с практическими работами повторяется теория. В частности, такой вопрос, как характеристика хлора по положению в периодической системе (описана в начале статьи).

В результате опытов выясняется, что элемент активно реагирует на органические соединения. Если поместить в банку с хлором вату, смоченную предварительно в скипидаре, то она мгновенно воспламенится, и из колбы резко повалит сажа. Эффектно тлеет желтоватым пламенем натрий, а на стенках химпосуды появляются кристаллы соли. Ученикам будет небезынтересно узнать, что, будучи ещё молодым химиком, Н. Н. Семенов (впоследствии лауреат Нобелевской премии), проведя такой опыт, собрал со стенок колбы соль и, посыпав ею хлеб, съел его. Химия оказалась права и не подвела ученого. В результате проведенного химиком опыта действительно получилась обычная поваренная соль!

Включайся в дискуссию
Читайте также
Тема урока: « Бисквитное тесто и изделия из него Объяснение нового материала
гбоу нпо профессиональный лицей кулинарного мастерства солдатенкова и
Тест по английскому языку на определение уровня — Placement Test