Подпишись и читай
самые интересные
статьи первым!

Сага о ракетных топливах. Как устроен и работает жидкостно-реактивный двигатель

Недавно случившаяся авария ракеты« Днепр», космического носителя, переделанного из военной ракеты Р-36М УТТХ, снова вызвала интерес к ракетному топливу.

V-2 («Фау-2») легла в основу всей послевоенной ракетной техники, и американской, и советской

Запуск 900 ракет «Фау-2» требовал 12 тыс. т жидкого кислорода, 4 тыс. тонн этилового спирта, 2 тыс. т метанола, 500 т перекиси водорода и 1,5 тыс. т взрывчатки

Вместо спирта, который наряду с жидким кислородом использовал Вернер фон Браун, Королев для своих первых ракет выбрал керосин

Ни бензин, не керосин, ни дизельное топливо не воспламеняются сами при взаимодействии с кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу

Ракета S-4B, третья ступень еще одного детища Вернера фон Брауна — самой мощной американской ракеты-носителя Saturn V. В активе последней — 13 успешных запусков (с 1967 по 1973 год). Именно с ее помощью человек ступил на Луну

Жидкостные ракетные двигатели (ЖРД) — очень совершенные машины, и их характеристики на 90%, а то и больше, определяются примененным топливом. Эффективность же топлива зависит от состава и запасенной энергии. Идеальное топливо должно состоять из легких элементов — из самого начала таблицы Менделеева, дающих максимальную энергию при окислении. Но это не все требования к топливу — еще оно должно быть совместимым с конструкционными материалами, стабильным при хранении и по возможности недорогим. Но ракета — это не только двигатель, но еще и баки ограниченного объема: чтобы взять на борт больше топлива, его плотность должна быть повыше. Кроме топлива ракета везет с собой и окислитель.

Идеальный окислитель с точки зрения химии — жидкий кислород. Но одной химией ракета не исчерпывается, это конструкция, в которой все взаимоувязано. Вернер фон Браун выбрал для Фау-2 спирт и жидкий кислород, и дальность ракеты получилась 270 км. Но если бы ее двигатель работал на азотной кислоте и дизельном топливе, то дальность увеличилась бы на четверть, потому что такого топлива в те же баки помещается на две тонны больше!

Ракетное топливо — кладовая химической энергии в компактном виде. Топливо тем лучше, чем больше энергии запасает. Поэтому вещества, хорошие для ракетного топлива, всегда чрезвычайно химически активны, непрерывно пытаются высвободить скрытую энергию, разъедая, сжигая и разрушая все вокруг. Все ракетные окислители либо взрывоопасны, либо ядовиты, либо нестойки. Жидкий кислород — единственное исключение, и то только потому, что природа приучилась к 20% свободного кислорода в атмосфере. Но даже жидкий кислород требует уважения.

Хранить вечно

Баллистические ракеты Р-1, Р-2 и Р-5, созданные под руководством Сергея Королева, не только показали перспективность этого вида оружия, но и дали понять, что жидкий кислород не очень подходит для боевых ракет. Несмотря на то, что Р-5М была первой ракетой с ядерной боеголовкой, а в 1955 году даже было произведено реальное испытание с подрывом ядерного заряда, военных не устраивало, что ракету нужно заправлять непосредственно перед стартом. Требовалась замена жидкому кислороду, замена полноценная, такая, чтоб и в сибирские морозы не замерзала, и в каракумскую жару не выкипала: то есть с диапазоном температур от -55 градусов до +55 градусов Цельсия. Правда, с кипением в баках проблем не ожидалось, так как давление в баке повышенное, а при повышенном давлении и температура кипения больше. Но кислород ни при каком давлении не будет жидким при температуре выше критической, то есть -113 градусов Цельсия. А таких морозов даже в Антарктиде не бывает.

Азотная кислота HNO3 — другой очевидный окислитель для ЖРД, и ее использование в ракетной технике шло параллельно с жидким кислородом. Соли азотной кислоты — нитраты, особенно калийная селитра — уже много веков использовались как окислитель самого первого ракетного топлива — черного пороха.

Молекула азотной кислоты содержит как балласт лишь один атом азота да «половинку» молекулы воды, а два с половиной атома кислорода могут быть использованы для окисления горючего. Но азотная кислота — очень «хитрое» вещество, настолько странное, что непрерывно реагирует само с собой — атомы водорода от одной молекулы кислоты отщепляются и прицепляются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Из-за этого в азотной кислоте обязательно образуются разного рода примеси.

Кроме того, азотная кислота очевидно не удовлетворяет требованиям совместимости с конструкционными материалами — под нее специально приходится подбирать металл для баков, труб, камер ЖРД. Тем не менее «азотка» стала популярным окислителем еще в 1930-е годы — она дешева, производится в больших количествах, достаточно стабильна, чтобы ею можно было охлаждать камеру двигателя, пожаро- и взрывобезопасна. Плотность ее заметно больше, чем у жидкого кислорода, но главное ее достоинство по сравнению с жидким кислородом состоит в том, что она не выкипает, не требует теплоизоляции, может неограниченно долго храниться в подходящей таре. Только где ее взять, подходящую тару?

Все 1930-е и 1940-е годы прошли под знаменем поиска подходящих емкостей для азотной кислоты. Но даже самые стойкие сорта нержавеющей стали медленно разрушались концентрированной азоткой, в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов, который, конечно же, нельзя подавать в ракетный двигатель — он мгновенно забьется и взорвется.

Для уменьшения коррозионной активности азотной кислоты в нее стали добавлять различные вещества, пытаясь, зачастую методом проб и ошибок, найти комбинацию, которая бы, с одной стороны, не испортила окислитель, с другой — сделала его более удобным в использовании. Но удачная добавка была найдена только в конце 1950-х американскими химиками — оказалось, что всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз! Советские химики задержались с этим открытием лет на десять-пятнадцать.

Секретные присадки

Тем не менее первый в СССР ракетный самолет-перехватчик БИ-1 использовал именно азотную кислоту и керосин. Баки и трубы пришлось делать из монель-металла — сплава никеля и меди. Этот сплав получался «естественным» образом из некоторых полиметаллических руд, поэтому был популярным конструкционным материалом второй трети ХХ века. О его внешнем виде можно судить по металлическим рублям — они сделаны из почти «ракетного» сплава. Во время войны не хватало, однако, не только меди с никелем, но и нержавеющей стали. Приходилось использовать обычную, покрытую для защиты хромом. Но тонкий слой быстро проедался кислотой, поэтому после каждого запуска двигателя остатки топливной смеси приходилось скребками удалять из камеры сгорания — техники поневоле вдыхали ядовитые испарения. Один из пионеров ракетной техники Борис Черток однажды едва не погиб при взрыве двигателя для БИ-1 на стенде, этот эпизод он описал в своей замечательной книге «Ракеты и люди».

Помимо добавок, снижающих агрессивность азотной кислоты, в нее пытались добавлять разные вещества, чтобы повысить ее эффективность как окислителя. Наиболее результативным веществом была двуокись азота, еще одно «странное» соединение. Обычно — газ бурого цвета, с резким неприятным запахом, но стоит его слегка охладить, он сжижается и две молекулы двуокиси склеиваются в одну. Поэтому соединение часто называют четырехокисью азота, или азотным тетраоксидом — АТ. При атмосферном давлении АТ кипит при комнатной температуре (+21 градус), а при -11 градусах замерзает. Чем ближе к точке замерзания, тем бледнее цвет соединения, становящегося под конец бледно-желтым, а в твердом состоянии — почти бесцветным. Это оттого, что газ состоит в основном из молекул NO2, жидкость — из смеси NO2 и димеров N2O4, а в твердом веществе остаются одни только бесцветные димеры.

Добавка АТ в азотную кислоту увеличивает эффективность окислителя сразу по многим причинам — АТ содержит меньше «балласта», связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты. Самое интересное, что с растворением АТ в АК плотность раствора сначала растет и достигает максимума при 14% растворенного АТ. Именно этот вариант состава и выбрали американские ракетчики для своих боевых ракет. Наши же стремились повысить характеристики двигателей любой ценой, поэтому в окислителях АК-20 и АК-27 было по 20% и 27% соответственно растворенного азотного тетраоксида. Первый окислитель использовался в зенитных ракетах, а второй — в баллистических. КБ Янгеля создало ракету средней дальности Р-12, которая использовала АК-27 и специальный сорт керосина ТМ-185.

Зажигалки

Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Военных больше всего устраивал бы продукт перегонки нефти, но и другие вещества, если они производились в достаточных количествах и стоили недорого, тоже можно было использовать. Проблема была одна — ни бензин, ни керосин, ни дизельное топливо не воспламеняются сами при контакте с азотной кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу. Хотя наша первая межконтинентальная ракета Р-7 использовала пару «керосин — жидкий кислород», стало ясно, что пиротехническое зажигание неудобно для боевых ракет. При подготовке ракеты к пуску требовалось вручную вставить в каждое сопло (а их у Р-7 ни много ни мало 32−20 основных камер и 12 рулевых) деревянную крестовину с зажигательной шашкой, подключить все электропровода, которыми шашки воспламеняются, и проделать еще много разных подготовительных операций.

В Р-12 эти недостатки были учтены, и зажигание обеспечивалось пусковым горючим, которое самовоспламенялось при контакте с азотной кислотой. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250». Наши ракетчики переименовали его в соответствии с ГОСТами в ТГ-02. Теперь ракета могла стоять заправленной несколько недель, и это был большой успех, так как ее можно было бы запустить в течение пары часов вместо трех суток для Р-7. Но три компонента — много для боевой ракеты, а для использования в качестве основного горючего ТГ-02 годился только для зенитных ракет; для баллистических ракет дальнего действия нужно было что-то более эффективное.

Гиперголики

Химики назвали пары веществ, самовоспламеняющихся при контакте, «гиперголическими», то есть, в приблизительном переводе с греческого, имеющими чрезмерное сродство друг с другом. Они знали, что лучше всего воспламеняются с азотной кислотой вещества, имеющие в составе, кроме углерода и водорода, азот. Но «лучше» — это насколько?

Задержка самовоспламенения — ключевое свойство для пар химических веществ, которые мы хотим сжечь в ракетном двигателе. Представьте — включили подачу, горючее и окислитель накапливаются в камере, а воспламенения нет! Зато, когда оно наконец происходит, мощный взрыв разносит камеру ЖРД на кусочки. Для определения задержки самовоспламенения разные исследователи строили самые разные по сложности стенды — от двух пипеток, синхронно выдавливающих по капельке окислителя и горючего, до маленьких ракетных двигателей без сопла — форсуночная головка и короткая цилиндрическая труба. Все равно взрывы раздавались очень часто, действуя на нервы, выбивая стекла и повреждая датчики.

Очень быстро был обнаружен «идеальный гиперголь» — гидразин, старый знакомый химиков. Это вещество, имеющее формулу N2H4, по физическим свойствам очень похоже на воду — плотность на несколько процентов больше, температура замерзания +1,5 градуса, кипения +113 градусов, вязкость и все прочее — как у воды, но вот запах…

Гидразин был получен впервые в чистом виде в конце XIX века, а в составе ракетного топлива впервые употреблен немцами в 1933 году, но в качестве сравнительно небольшой добавки для самовоспламенения. Как самостоятельное горючее гидразин был дорог, производство его недостаточно, но, главное, военных не устраивала его температура замерзания — выше, чем у воды! Нужен был «гидразиновый антифриз», и его поиски шли непрерывно. Уж очень гидразин хорош! Вернер фон Браун для запуска первого спутника США «Эксплорер» заменил спирт в ракете «Редстоун» на «гидин» (Hydyne), смесь 60% гидразина и 40% спирта. Такое горючее улучшило энергетику первой ступени, но для достижения необходимых характеристик пришлось удлинить баки.

Гидразин, как и аммиак NH3, состоит только из азота и водорода. Но если при образовании аммиака из элементов энергия выделяется, то при образовании гидразина энергия поглощается — именно поэтому прямой синтез гидразина невозможен. Зато поглощенная при образовании энергия выделится потом при сгорании гидразина в ЖРД и пойдет на повышение удельного импульса — главного показателя совершенства двигателя. Пара кислород-керосин позволяет получить удельную тягу для двигателей первой ступени в районе 300 секунд. Замена жидкого кислорода на азотную кислоту ухудшает эту величину до 220 секунд. Такое ухудшение требует увеличения стартовой массы почти в два раза. Если же заменить керосин гидразином, большую часть этого ухудшения можно «отыграть». Но военным было нужно, чтобы горючее не замерзало, и они требовали альтернативу.

Пути разошлись

И тут пути наших и американских химиков разошлись! В СССР химики придумали способ получения несимметричного диметилгидразина, а американцы предпочли более простой процесс, в котором получался монометилгидразин. Обе эти жидкости, несмотря на их чрезвычайную ядовитость, устраивали и конструкторов, и военных. К аккуратности при обращении с опасными веществами ракетчикам было не привыкать, но все же новые вещества были настолько токсичными, что обычный противогаз не справлялся с очисткой воздуха от их паров! Нужно было либо использовать изолирующий противогаз, либо специальный патрон, который окислял токсичные пары до безопасного состояния. Зато метилированные производные гидразина были менее взрывоопасными, меньше впитывали водяные пары, были термически более стойкими. Но вот температура кипения и плотность по сравнению с гидразином понизились.

Поэтому поиски продолжались. Американцы одно время очень широко использовали «Аэрозин-50» — смесь гидразина и НДМГ, что было следствием изобретения технологического процесса, в котором они получались одновременно. Позднее этот способ был вытеснен более совершенными, но «Аэрозин-50» успел распространиться, и на нем летали и баллистические ракеты «Титан-2», и корабль «Аполлон». Ракета «Сатурн-5» разгоняла его к Луне на жидком водороде и кислороде, но собственный двигатель «Аполлона», которому нужно было включаться несколько раз в течение недельного полета, должен был использовать самовоспламеняющееся долгохранимое топливо.

Тепличные условия

Но дальше с баллистическими ракетами произошла удивительная метаморфоза — они спрятались в шахты, для защиты от первого удара противника. При этом уже не требовалось морозостойкости, так как в шахте воздух подогревался зимой и охлаждался летом! Топливо можно было подбирать, не учитывая его морозоустойчивости. И сразу же двигателисты отказались от азотной кислоты, перейдя на чистый азотный тетраоксид. Тот самый, что кипит при комнатной температуре! Ведь давление в баке повышенное, а при повышенном давлении и температура кипения нас беспокоит гораздо меньше. Зато теперь коррозия баков и трубопроводов уменьшилась настолько, что стало возможным хранить ракету заправленной на протяжении всего срока боевого дежурства! Первой ракетой, которая могла стоять заправленной 10 лет подряд, стала УР-100 конструкции КБ Челомея. Почти одновременно с ней появилась гораздо более тяжелая Р-36 фирмы Янгеля. Нынешний ее потомок, последняя модификация Р-36М2, кроме баков, мало имеет общего с первоначальной ракетой.

По энергетическим характеристикам пары «кислород — керосин» и «четырехокись азота — НДМГ» очень близки. Но первая пара хороша для космических ракет-носителей, а вторая — для МБР шахтного базирования. Для работы с такими ядовитыми веществами была разработана специальная технология — ампулизация ракеты после заправки. Смысл ее понятен из названия: все магистрали перекрываются необратимо, чтобы избежать даже малейших утечек. Впервые она была применена на ракетах для подводных лодок, которые тоже использовали такое топливо.

Твердое топливо

Американские же ракетчики для боевых ракет предпочли твердое топливо. Оно имело несколько худшие характеристики, зато ракета требовала гораздо меньше подготовительных операций при запуске. Наши тоже пытались использовать твердотопливные ракеты, но последнюю ступень все равно приходилось делать жидкостной, для того чтобы скомпенсировать разброс работы твердотопливных двигателей, которые невозможно регулировать так, как жидкостные. А позднее, когда появились ракеты с несколькими боеголовками, на последнюю жидкостную ступень легла задача «разведения» их по целям. Так что пара «АТ-НДМГ» без работы не осталась. Не остается и сейчас: на этом топливе работают двигатели космического корабля «Союз», Международной космической станции и многих других аппаратов.

Как устроен и работает жидкостно-реактивный двигатель

Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб, воздушных торпед и т. д. Иногда ЖРД применяются и в качестве стартовых двигателей для облегчения взлета самолетов.

Имея в виду основное назначение ЖРД, мы ознакомимся с их устройством и работой на примерах двух двигателей: одного - для дальней или стратосферной ракеты, другого - для ракетного самолета. Эти конкретные двигатели далеко не во всем являются типичными и, конечно, уступают по своим данным новейшим двигателям этого типа, но все же являются во многом характерными и дают довольно ясное представление о современном жидкостно-реактивном двигателе.

ЖРД для дальней или стратосферной ракеты

Ракеты этого типа применялись либо в качестве дальнобойного сверхтяжелого снаряда, либо для исследования стратосферы. Для военных целей они были применены немцами для бомбардировки Лондона в 1944 г. Эти ракеты имели около тонны взрывчатого вещества и дальность полета около 300 км . При исследовании стратосферы головка ракеты вместо взрывчатки несет в себе различную исследовательскую аппаратуру и обычно имеет приспособление для отделения от ракеты и спуска на парашюте. Высота подъема ракеты 150–180 км .

Внешний вид такой ракеты представлен на фиг. 26, а ее разрез на фиг. 27. Фигуры людей, стоящих рядом с ракетой, дают представление о внушительных размерах ракеты: ее общая длина равна 14 м , диаметр около 1,7 м , а по оперению около 3,6 м , вес снаряженной ракеты со взрывчаткой - 12,5 тонны.

Фиг. 26. Подготовка к запуску стратосферной ракеты.

Ракета движется с помощью жидкостно-реактивного двигателя, расположенного в ее задней части. Общий вид двигателя показан на фиг. 28. Двигатель работает на двухкомпонентном топливе - обычном винном (этиловом) спирте 75 %-ной крепости и жидком кислороде, которые хранятся в двух отдельных больших баках, как это показано на фиг. 27. Запас топлива на ракете - около 9 тонн, что составляет почти 3/4 общего веса ракеты, да и по объему топливные баки составляют большую часть всего объема ракеты. Несмотря на такое огромное количество топлива его хватает всего только на 1 минуту работы двигателя, так как двигатель расходует больше 125 кг топлива в секунду.

Фиг. 27. Разрез ракеты дальнего действия.

Количество обоих компонентов топлива, спирта и кислорода, рассчитывается так, чтобы они выгорали одновременно. Так как для сгорания 1 кг спирта в данном случае расходуется около 1,3 кг кислорода, то бак для горючего вмещает примерно 3,8 тонны спирта, а бак для окислителя - около 5 тонн жидкого кислорода. Таким образом даже в случае применения спирта, который требует для сгорания значительно меньше кислорода, чем бензин или керосин, заполнение обоих баков одним только горючим (спиртом) при использовании атмосферного кислорода увеличило бы продолжительность работы двигателя в два-три раза. Вот к чему приводит необходимость иметь окислитель на борту ракеты.

Фиг. 28. Двигатель ракеты.

Невольно возникает вопрос: как же ракета покрывает расстояние в 300 км, если двигатель работает всего только 1 минуту? Объяснение этому дает фиг. 33, на которой представлена траектория полета ракеты, а также указано изменение скорости вдоль траектории.

Запуск ракеты осуществляется после установки ее в вертикальное положение с помощью легкого пускового устройства, как это видно на фиг. 26. После запуска ракета вначале поднимается почти вертикально, а по истечении 10–12 секунд полета начинает отклоняться от вертикали и под действием рулей, управляемых гироскопами, движется по траектории, близкой к дуге окружности. Такой полет длится все время, пока работает двигатель, т. е. примерно в течение 60 сек.

Когда скорость достигает расчетной величины, приборы управления выключают двигатель; к этому моменту в баках ракеты почти не остается топлива. Высота ракеты к моменту окончания работы двигателя равняется 35–37 км , а ось ракеты составляет с горизонтом угол в 45° (этому положению ракеты соответствует точка А на фиг. 29).

Фиг. 29. Траектория полета дальней ракеты.

Такой угол возвышения обеспечивает максимальную дальность в последующем полете, когда ракета движется по инерции, подобно артиллерийскому снаряду, который вылетел бы из орудия, обрез ствола которого находится на высоте 35–37 км . Траектория дальнейшего полета близка к параболе, а общее время полета равно приблизительно 5 мин. Максимальная высота, которой достигает при этом ракета, составляет 95-100 км , стратосферные же ракеты достигают значительно больших высот, более 150 км . На фотографиях, сделанных с этой высоты аппаратом, установленным на ракете, уже отчетливо видна шарообразность земли.

Интересно проследить, как изменяется скорость полета по траектории. К моменту выключения двигателя, т. е. после 60 секунд полета, скорость полета достигает наибольшего значения и равна примерно 5500 км/час , т. е. 1525 м/сек . Именно в этот момент мощность двигателя становится также наибольшей, достигая для некоторых ракет почти 600.000 л. с .! Дальше под воздействием силы тяжести скорость ракеты уменьшается, а после достижения наивысшей точки траектории по той же причине снова начинает расти до тех пор, пока ракета не войдет в плотные слои атмосферы. В течение всего полета, кроме самого начального участка - разгона, - скорость ракеты значительно превышает скорость звука, средняя скорость по всей траектории составляет примерно 3500 км/час и даже на землю ракета падает со скоростью, в два с половиной раза превышающей скорость звука и равной 3000 км/час . Это значит, что мощный звук от полета ракеты доносится лишь после ее падения. Здесь уже не удастся уловить приближение ракеты с помощью звукоулавливателей, обычно применяющихся в авиации или морском флоте, для этого потребуются совсем другие методы. Такие методы основаны на применении вместо звука радиоволн. Ведь радиоволна распространяется со скоростью света - наибольшей скоростью, возможной на земле. Эта скорость, равная 300 000 км/сек, конечно, более чем достаточна, чтобы отметить приближение самой быстролетящей ракеты.

С большой скоростью полета ракет связана еще одна проблема. Дело в том, что при больших скоростях полета в атмосфере, вследствие торможения и сжатия воздуха, набегающего на ракету, температура ее корпуса сильно повышается. Расчет показывает, что температура стенок описанной выше ракеты должна достигать 1000–1100 °C. Испытания показали, правда, что в действительности эта температура значительно меньше из-за охлаждения стенок путем теплопроводности и излучения, но все же она достигает 600–700 °C, т. е. ракета нагревается до красного каления. С увеличением скорости полета ракеты температура ее стенок будет быстро расти и может стать серьезным препятствием для дальнейшего роста скорости полета. Вспомним, что метеориты (небесные камни), врывающиеся с огромной скоростью, до 100 км/сек , в пределы земной атмосферы, как правило, «сгорают», и то, что мы принимаем за падающий метеорит («падающую звезду») есть в действительности только сгусток раскаленных газов и воздуха, образующийся в результате движения метеорита с большой скоростью в атмосфере. Поэтому полеты с весьма большими скоростями возможны лишь в верхних слоях атмосферы, где воздух разрежен, или за ее пределами. Чем ближе к земле, тем меньше допустимые скорости полета.

Фиг. 30. Схема устройства двигателя ракеты.

Схема двигателя ракеты представлена на фиг. 30. Обращает на себя внимание относительная простота этой схемы по сравнению с обычными поршневыми авиационными двигателями; в особенности характерно для ЖРД почти полное отсутствие в силовой схеме двигателя движущихся частей. Основными элементами двигателя являются камера сгорания, реактивное сопло, парогазогенератор и турбонасосный агрегат для подачи топлива и система управления.

В камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле - преобразование тепловой энергии продуктов сгорания в скоростную энергию струи газов, вытекающих из двигателя в атмосферу. Как изменяется состояние газов при течении их в двигателе показано на фиг. 31.

Давление в камере сгорания равно 20–21 ата , а температура достигает 2 700 °C. Характерным для камеры сгорания является огромное количество тепла, которое выделяется в ней при сгорании в единицу времени или, как говорят, теплонапряженность камеры. В этом отношении камера сгорания ЖРД значительно превосходит все другие известные в технике топочные устройства (топки котлов, цилиндры двигателей внутреннего сгорания и другие). В данном случае в камере сгорания двигателя в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить более 1,5 тонны ледяной воды! Чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, как, впрочем, и стенки сопла. Для этой цели, как это видно на фиг. 30, камера сгорания и сопло охлаждаются горючим - спиртом, который сначала омывает их стенки, а уже затем, подогретый, поступает в камеру сгорания. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру (такую систему охлаждения называют поэтому иногда регенеративной). Однако одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие сверления, расположенные в нескольких кольцевых поясах, так что через эти отверстия внутрь камеры и сопла поступает спирт (около 1/10 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, превышает 2500 °C, температура внутренней поверхности стенок, как показали испытания, не превышает 1 000 °C.

Фиг. 31. Изменение состояния газов в двигателе.

Топливо подается в камеру сгорания через 18 горелок-форкамер, расположенных на ее торцевой стенке. Кислород поступает внутрь форкамер через центральные форсунки, а спирт, выходящий из рубашки охлаждения, - через кольцо маленьких форсунок вокруг каждой форкамеры. Таким образом обеспечивается достаточно хорошее перемешивание топлива, необходимое для осуществления полного сгорания за то очень короткое время пока топливо находится в камере сгорания (сотые доли секунды).

Реактивное сопло двигателя изготовлено из стали. Его форма, как это хорошо видно на фиг. 30 и 31, представляет собой сначала сужающуюся, а потом расширяющуюся трубу (так называемое сопло Лаваля). Как указывалось ранее, такую же форму имеют сопла и пороховых ракетных двигателей. Чем объясняется такая форма сопла? Как известно, задачей сопла является обеспечение полного расширения газа с целью получения наибольшей скорости истечения. Для увеличения скорости течения газа по трубе ее сечение должно вначале постепенно уменьшаться, что имеет место и при течении жидкостей (например, воды). Скорость движения газа будет увеличиваться, однако, только до тех пор, пока она не станет равной скорости распространения звука в газе. Дальнейшее увеличение скорости в отличие от жидкости станет возможным только при расширении трубы; это отличие течения газа от течения жидкости связано с тем, что жидкость несжимаема, а объем газа при расширении сильно увеличивается. В горловине сопла, т. е. в наиболее узкой его части, скорость течения газа всегда равна скорости звука в газе, в нашем случае около 1000 м/сек . Скорость же истечения, т. е. скорость в выходном сечении сопла, равна 2100–2200 м/сек (таким образом удельная тяга составляет примерно, 220 кг сек/кг ).

Подача топлива из баков в камеру сгорания двигателя осуществляется под давлением с помощью насосов, имеющих привод от турбины и скомпонованных вместе с нею в единый турбонасосный агрегат, как это видно на фиг. 30. В некоторых двигателях подача топлива осуществляется под давлением, которое создается в герметических топливных баках с помощью какого-либо инертного газа - например, азота, хранящегося под большим давлением в специальных баллонах. Такая система подачи проще насосной, но, при достаточно большой мощности двигателя, получается более тяжелой. Однако и при насосной подаче топлива в описываемом нами двигателе баки, как кислородный, так и спиртовой, находятся под некоторым избыточным давлением изнутри для облегчения работы насосов и предохранения баков от смятия. Это давление (1,2–1,5 ата ) создается в спиртовом баке воздухом или азотом, в кислородном - парами испаряющегося кислорода.

Оба насоса - центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата , поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала - при 4000 об/мин колеса турбины она достигает почти 500 л. с .

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.

При запуске очень важно обеспечить строгий порядок поступления в камеру сгорания обоих компонентов топлива. В этом заключается одна из важных задач системы управления и регулирования двигателя. Если в камере сгорания накапливается один из компонентов (поскольку задерживается поступление другого), то обычно вслед за этим происходит взрыв, при котором двигатель часто выходит из строя. Это, наряду со случайными перерывами в горении, является одной из наиболее частых причин катастроф при испытаниях ЖРД.

Обращает на себя внимание ничтожный вес двигателя по сравнению с развиваемой им тягой. При весе двигателя меньше 1000 кг тяга составляет 25 тонн, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только

Для сравнения укажем, что обычный поршневой авиационный двигатель, работающий на винт, имеет удельный вес 1–2 кг/кг , т. е. в несколько десятков раз больше. Важно также то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости.

ЖРД для ракетного самолета

Фиг. 32. Проект ЖРД с регулируемой тягой.

1 - передвижная игла; 2 - механизм передвижения иглы; 3 - подача горючего; 4 - подача окислителя.

Основное требование, предъявляемое к авиационному жидкостно-реактивному двигателю - возможность изменять развиваемую им тягу в соответствии с режимами полета самолета, вплоть до остановки и повторного запуска двигателя в полете. Наиболее простой и распространенный способ изменения тяги двигателя заключается в регулировании подачи топлива в камеру сгорания, вследствие чего изменяется давление в камере и тяга. Однако этот способ невыгоден, так как при уменьшении давления в камере сгорания, понижаемого в целях уменьшения тяги, уменьшается доля тепловой энергии топлива, переходящая в скоростную энергию струи. Это приводит к увеличению расхода топлива на 1 кг тяги, а следовательно, и на 1 л. с . мощности, т. е. двигатель при этом начинает работать менее экономично. Для уменьшения этого недостатка авиационные ЖРД часто имеют вместо одной от двух до четырех камер сгорания, что позволяет при работе на пониженной мощности выключать одну или несколько камер. Регулирование тяги изменением давления в камере, т. е. подачей топлива, сохраняется и в этом случае, но используется лишь в небольшом диапазоне до половины тяги отключаемой камеры. Наиболее выгодным способом регулирования тяги ЖРД было бы изменение проходного сечения его сопла при одновременном уменьшении подачи топлива, так как при этом уменьшение секундного количества вытекающих газов достигалось бы при сохранении неизменным давления в камере сгорания, а, значит, и скорости истечения. Такое регулирование проходного сечения сопла можно было бы осуществить, например, с помощью передвижной иглы специального профиля, как это показано на фиг. 32, изображающей проект ЖРД с регулируемой таким способом тягой.

На фиг. 33 представлен однокамерный авиационный ЖРД, а на фиг. 34 - такой же ЖРД, но с добавочной небольшой камерой, которая используется на крейсерском режиме полета, когда требуется небольшая тяга; основная камера при этом отключается совсем. На максимальном режиме работают обе камеры, причем большая развивает тягу в 1700 кг, а малая - 300 кг , так что общая тяга составляет 2000 кг . В остальном двигатели по конструкции аналогичны.

Двигатели, изображенные на фиг. 33 и 34, работают на самовоспламеняющемся топливе. Это топливо состоит из перекиси водорода в качестве окислителя и гидразин-гидрата в качестве горючего, в весовом соотношении 3:1. Точнее, горючее представляет собой сложный состав, состоящий из гидразин-гидрата, метилового спирта и солей меди в качестве катализатора, обеспечивающего быстрое протекание реакции (применяются и другие катализаторы). Недостатком этого топлива является то, что оно вызывает коррозию частей двигателя.

Вес однокамерного двигателя составляет 160 кг , удельный вес равен

На килограмм тяги. Длина двигателя - 2,2 м . Давление в камере сгорания - около 20 ата . При работе на минимальной подаче топлива для получения наименьшей тяги, которая равна 100 кг , давление в камере сгорания уменьшается до 3 ата . Температура в камере сгорания достигает 2500 °C, скорость истечения газов около 2100 м/сек . Расход топлива равен 8 кг/сек , а удельный расход топлива составляет 15,3 кг топлива на 1 кг тяги в час.

Фиг. 33. Однокамерный ЖРД для ракетного самолета

Фиг. 34. Двухкамерный авиационный ЖРД.

Фиг. 35. Схема подачи топлива в авиационном ЖРД.

Схема подачи топлива в двигатель представлена на фиг. 35. Как и в двигателе ракеты, подача горючего и окислителя, хранящихся в отдельных баках, производится под давлением около 40 ата насосами, имеющими привод от турбинки. Общий вид турбонасосного агрегата показан на фиг. 36. Турбинка работает на паро-газовой смеси, которая, как и раньше, получается в результате разложения перекиси водорода в парогазогенераторе, который в этом случае наполнен твердым катализатором. Горючее до поступления в камеру сгорания охлаждает стенки сопла и камеры сгорания, циркулируя, в специальной охлаждающей рубашке. Изменение подачи топлива, необходимое для регулирования тяги двигателя в процессе полета, достигается изменением подачи перекиси водорода в парогазогенератор, что вызывает изменение оборотов турбинки. Максимальное число оборотов турбинки равно 17 200 об/мин. Запуск двигателя осуществляется с помощью электромотора, приводящего во вращение турбонасосный агрегат.

Фиг. 36. Турбонасосный агрегат авиационного ЖРД.

1 - шестерня привода от пускового электромотора; 2 - насос для окислителя; 3 - турбина; 4 - насос для горючего; 5 - выхлопной патрубок турбины.

На фиг. 37 показана схема установки однокамерного ЖРД в хвостовой части фюзеляжа одного из опытных ракетных самолетов.

Назначение самолетов с жидкостно-реактивными двигателями определяется свойствами ЖРД - большой тягой и, соответственно, большой мощностью на больших скоростях полета и больших высотах и малой экономичностью, т. е. большим расходом топлива. Поэтому ЖРД обычно устанавливаются на военных самолетах - истребителях-перехватчиках. Задача такого самолета - при получении сигнала о приближении самолетов противника быстро взлететь и набрать большую высоту, на которой обычно летят эти самолеты, а затем, используя свое преимущество в скорости полета, навязать противнику воздушный бой. Общая продолжительность полета самолета с жидкостно-реактивным двигателем определяется запасом топлива на самолете и составляет 10–15 минут, поэтому эти самолеты обычно могут совершать боевые операции лишь в районе своего аэродрома.

Фиг. 37. Схема установки ЖРД на самолете.

Фиг. 38. Ракетный истребитель (вид в трех проекциях)

На фиг. 38 показан истребитель-перехватчик с описанным выше ЖРД. Размеры этого самолета, как и других самолетов этого типа, обычно невелики. Полный вес самолета с топливом составляет 5100 кг ; запаса топлива (свыше 2,5 тонны) хватает только на 4,5 минуты работы двигателя на полной мощности. Максимальная скорость полета - свыше 950 км/час ; потолок самолета, т. е. максимальная высота, которой он может достигнуть, - 16 000 м . Скороподъемность самолета характеризуется тем, что за 1 минуту он может подняться с 6 до 12 км .

Фиг. 39. Устройство ракетного самолета.

На фиг. 39 показано устройство другого самолета с ЖРД; это - опытный самолет, построенный для достижения скорости полета, превышающей скорость звука (т. е. 1200 км/час у земли). На самолете, в задней части фюзеляжа, установлен ЖРД, имеющий четыре одинаковых камеры с общей тягой 2720 кг . Длина двигателя 1400 мм , максимальный диаметр 480 мм , вес 100 кг . Запас топлива на самолете, в качестве которого используются спирт и жидкий кислород, составляет 2360 л .

Фиг. 40. Четырехкамерный авиационный ЖРД.

Внешний вид этого двигателя показан на фиг. 40.

Другие области применения ЖРД

Наряду с основным применением ЖРД в качестве двигателей для дальних ракет и ракетных самолетов они применяются в настоящее время и в ряде других случаев.

Довольно широкое применение получили ЖРД в качестве двигателей тяжелых ракетных снарядов, подобных представленному на фиг. 41. Двигатель этого снаряда может служить примером простейшего ЖРД. Подача топлива (бензин и жидкий кислород) в камеру сгорания этого двигателя производится под давлением нейтрального газа (азота). На фиг. 42 показана схема тяжелой ракеты, применявшейся в качестве мощного зенитного снаряда; на схеме приведены габаритные размеры ракеты.

Применяются ЖРД и в качестве стартовых авиационных двигателей. В этом случае иногда используется низкотемпературная реакция разложения перекиси водорода, отчего такие двигатели называют «холодными».

Имеются случаи применения ЖРД в качестве ускорителей для самолетов, в частности, самолетов с турбореактивными двигателями. Насосы подачи топлива з этом случае приводятся иногда от вала турбореактивного двигателя.

ЖРД применяются наряду с пороховыми двигателями также для старта и разгона летающих аппаратов (или их моделей) с прямоточными воздушно-реактивными двигателями. Как известно, эти двигатели развивают очень большую тягу при высоких скоростях полета, больших скорости звука, но вовсе не развивают тяги при взлете.

Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.

В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных

Фиг. 41. Ракетный снаряд с ЖРД.

двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.

Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.

7 - боевая головка; 2 - баллон со сжатым азотом; 3 - бак с окислителем; 4 - бак с горючим; 5 - жидкостно-реактивный двигатель.

По другому способу сооружается специальная ракетная тележка, передвигающаяся по рельсам с помощью ЖРД. Результаты испытания профиля, установленного на такой тележке в особом весовом механизме, записываются специальными автоматическими приборами, расположенными также на тележке. Такая ракетная тележка показана на фиг. 43. Длина рельсового пути может достигать 2–3 км .

Фиг. 43. Ракетная тележка для испытания профилей крыльев самолета.

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Двигатель работает неустойчиво на всех режимах Неисправности системы зажигания Износ и повреждения контактного уголька, зависание его в крышке распределителя зажигания. Утечка тока на «массу» через нагар или влагу на внутренней поверхности крышки. Заменить контактный

Из книги Броненосец " ПЕТР ВЕЛИКИЙ" автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Неисправности карбюратора Низкий или высокий уровень топлива в поплавковой камере. Низкий уровень – хлопки в карбюраторе, высокий – хлопки в глушителе. На выхлопе

Из книги Броненосец "Наварин" автора Арбузов Владимир Васильевич

Двигатель работает нормально на холостом ходу, но автомобиль разгоняется медленно и с «провалами»; плохая приемистость двигателя Неисправности системы зажигания Не отрегулирован зазор между контактами прерывателя. Отрегулировать угол замкнутого состояния контактов

Из книги Самолеты мира 2000 02 автора Автор неизвестен

Двигатель «троит» – не работает один или два цилиндра Неисправности системы зажигания Неустойчивая работа двигателя на малых и средних оборотах. Повышенный расход топлива. Выхлоп дыма синий. Несколько приглушены периодически издаваемые звуки, которые особенно хорошо

Из книги Мир Авиации 1996 02 автора Автор неизвестен

При резком открывании дроссельных заслонок двигатель работает с перебоями Неисправности механизма газораспределения Не отрегулированы зазоры в клапанах. Через каждые 10 тыс. км пробега (для ВАЗ-2108, -2109 через 30 тыс. км) отрегулировать зазоры клапанов. При уменьшенном

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Двигатель неравномерно и неустойчиво работает на средних и больших частотах вращения коленчатого вала Неисправности системы зажигания Разрегулировок зазор контактов прерывателя. Для точной регулировки зазора между контактами измерять не сам зазор, да еще дедовским

Из книги Ракетные двигатели автора Гильзин Карл Александрович

Приложения КАК БЫЛ УСТРОЕН "ПЕТР ВЕЛИКИЙ" 1 . Мореходные и маневренные качестваВесь комплекс проведенных в 1876 году испытаний выявил следующие мореходные качества. Безопасность океанского плавания "Петра Великого" не внушала опасений, а его причисление к классу мониторов

Из книги Воздушно-реактивные двигатели автора Гильзин Карл Александрович

Как был устроен броненосец "Наварин" Корпус броненосца имел наибольшую длину 107 м (длина между перпендикулярами 105,9 м). ширину 20,42, проектную осадку 7,62 м носом и 8,4 кормой и набирался из 93 шпангоутов (шпация 1,2 метра). Шпангоуты обеспечивали продольную прочность и полные

Из книги История электротехники автора Коллектив авторов

Су-10 – первый реактивный бомбардировщик ОКБ П.О. Сухого Николай ГОРДЮКОВПосле второй мировой войны началась эпоха реактивной авиации. Очень быстро проходило переоснащение советских и зарубежных ВВС на истребители с турбореактивными двигателями. Однако создание

Из книги автора

Из книги автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Рис. 9. Регулировочные винты карбюратора: 1 – винт эксплуатационной регулировки (винт количества); 2 – винт состава смеси, (винт качества) с ограничительным

Из книги автора

Двигатель работает неустойчиво на всех режимах

Из книги автора

Как устроен и работает пороховой ракетный двигатель Основными конструктивными элементами порохового, как и любого другого ракетного двигателя, являются камера сгорания и сопло (фиг. 16).Благодаря тому, что подача пороха, как и вообще всякого твердого топлива, в камеру

Из книги автора

Топливо для жидкостно-реактивного двигателя Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.Основным требованием, которое предъявляется к топливу для ЖРД,

Из книги автора

Глава пятая Пульсирующий воздушно-реактивный двигатель На первый взгляд возможность значительного упрощения двигателя при переходе к большим скоростям полета кажется странной, пожалуй, даже невероятной. Вся история авиации до сих пор говорит о противоположном: борьба

Из книги автора

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

Главная Энциклопедия Словари Подробнее

Ракетное топливо (РТ)

Вещество или совокупность веществ, являющихся источником энергии и рабочего тела для создания реактивной силы в ракетном двигателе (РД). По виду источника энергии различают химические и ядерные РТ. Наибольшее практическое применение для РД межконтинентальных баллистических ракет (МБР), используемых в РВСН, получили химические РТ, являющиеся одновременно источником энергии, выделяемой за счет экзотермических реакций горения, и источником рабочего тела, в качестве которого выступают продукты сгорания топлива. Химические РТ по агрегатному состоянию разделяются на жидкие (ЖРТ), твердые (ТРТ) и смешанного агрегатного состава.

ЖРТ - ракетные топлива, находящиеся в жидком агрегатном состоянии в условиях эксплуатации. ЖРТ подразделяются на однокомпонентные (унитарные) и двухкомпонентные, называемые также топливами раздельной подачи. В качестве однокомпонентных ЖРТ могут рассматриваться химические вещества или их смеси, способные в определенных условиях к химическим реакциям распада или горения с выделением тепловой энергии. К таким веществам относятся, например, гидразин N2H4, пероксид водорода Н2О2, этиленоксид СН2СН2О и др. Однокомпонентные ЖРТ используются в ЖРД малой тяги, в качестве топлив для РД систем управления и ориентации, а также для газогенерирующих систем. Двухкомпонентные ЖРТ состоят из окислителя и горючего. В качестве окислителей используются вещества, содержащие преимущественно атомы окислительных элементов. К таким веществам относятся жидкие фтор F2 и кислород О2, концентрированная азотная кислота HNO3, азотный тетраоксид N2O4. Наиболее эффективными горючими ЖРТ являются жидкий водород Н2, керосин Т-1 (фракция с пределами выкипания 150...280°С), гидразин N2H4, несимметричный диметилгидразин H2NN(CH3)2 (НДМГ). В качестве горючих могут использоваться также металлы Mg, Al и их гидриды, вводимые в состав жидких горючих в виде дисперсных порошков с образованием гелей. При подаче в камеру сгорания РД компоненты ЖРТ могут самовоспламеняться (например, N2O4 + H2NN(CH3)2) или не самовоспламеняться (ж.H2+ж.О2). В последнем случае используются специальные системы воспламенения или специальные пусковые топлива. Двухкомпонентные ЖРТ используются преимущественно в маршевых двигателях ракет и их ступеней. Для придания ЖРТ комплекса требуемых свойств в компоненты топлива обычно вводят специальные присадки, способствующие, например, повышению стабильности физико-химических свойств компонентов при хранении или эксплуатации. Основным достоинством ЖРТ, определяющим целесообразность их использования, является возможность получения высокого уровня энергетических характеристик.

Например, для топлива на основе жидких О2 и Н2 при рк/pа=7/0,1 МПа реализуется удельный импульс до 3835 м/с тогда как для наиболее высокоэнергетических твердых топлив его значение не превышает 3000 м/с в сопоставимых условиях.

Компоненты ЖРТ разделяют на высококипящие и низкокипящие. Высококипящий компонент - это компонент ЖРТ, имеющий температуру кипения выше 298К при стандартных условиях. Высококипящие компоненты в интервале температур эксплуатации представляют собой жидкости. К высококипящим компонентам относятся азотнокислотные окислители, азотный тетраоксид а также целый ряд широко используемых горючих - керосин Т-1, несимметричный диметилгидразин и др.

Низкокипящий компонент - это компонент ЖРТ, имеющий температуру кипения ниже 298К при стандартных условиях. В интервале температур эксплуатации ракетной техники низкокипящие компоненты обычно находятся в газообразном состоянии. Для содержания низкокипящих компонентов в жидком состоянии используется специальное технологическое оборудование. Среди низкокипящих компонентов выделяют так называемые криогенные компоненты, имеющие температуру кипения ниже 120К. К криогенным компонентам относятся сжиженные газы: кислород, водород, фтор и др. Для уменьшения потерь на испарение и увеличения плотности возможно применение криогенного компонента в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента.

ТРТ - гомогенные или гетерогенные взрывчатые системы, способные к самостоятельному горению в широком диапазоне давлений (0,1...100 МПа) с выделением значительного количества тепла и газообразных продуктов горения. По химическому составу и способу производства подразделяются на баллиститные и смесевые. Структурно-энергетической основой баллиститов являются нитраты целлюлозы - коллоксилины с содержанием азота около 12%, пластифицированные труднолетучими активными растворителями (нитроглицерином, динитратдиэтиленгликолем) или другими жидкими нитроэфирами. В состав баллиститов могут вводиться мощные взрывчатые вещества (МВВ) - октоген или гексоген, а также входят также стабилизаторы химической стойкости, стабилизаторы горения, модификаторы горения, технологические и энергетические добавки (порошки Al, Mg или их сплавы). Баллиститы представляют собой твердые растворы, находящиеся в интервале температур эксплуатации в стеклообразном физическом состоянии.

Смесевые ТРТ это гетерогенные смеси окислителя (преимущественно перхлората аммония NH4ClO4, перхлората калия КСlO4 или нитрата аммония NH4NO3) и горючего-связующего, представляющего собой пластифицированный полимер (например, бутилкаучук, полибутадиен, полиуретан) с ингредиентами системы отверждения, технологическими и специальными добавками. В состав смесевых ТРТ для повышения их энергетических характеристик могут вводиться мощные бризантные ВВ (гексоген или октоген) в количестве до 50% и до 20% металлических горючих (Al, Mg или их гидридов). Регулирование баллистических характеристик (скорости горения и ее зависимости от различных факторов) ТРТ обычно осуществляется изменением дисперсности порошкообразных компонентов или введением в состав топлив модификаторов горения. Компоненты смесевых ТРТ обычно выполняют несколько функций: окислители являются наполнителями полимерной матрицы, обеспечивают необходимый уровень баллистических и энергомассовых характеристик; горючие, представляющие собой в большинстве случаев пластифицированные полимеры, обеспечивают монолитность твердотопливного заряда и необходимый уровень его механических характеристик; металлическое горючее предназначено для увеличения плотности топлива и повышения его энергетических возможностей.

Определенное по массе количество ТРТ, являющееся основным источником энергии и рабочего тела, имеющее заданные форму, размеры и начальную поверхность горения называется зарядом твердого топлива (ЗТТ). Применительно к РДТТ под ЗТТ понимают часть РД, обеспечивающую требуемый закон газообразования рабочего тела. По методу монтажа в камере РДТТ заряды подразделяются на вкладные, прочноскрепленные литые в корпус и литые в корпус, раскрепленные с помощью манжет.

В диапазоне температур эксплуатации смесевые ТРТ находятся в высокоэластическом состоянии. ТРТ по сравнению с ЖРТ более просты в эксплуатации, но уступают им по энергетическим характеристикам.

Топлива смешанного агрегатного состава (гибридные) представляют собой двухкомпонентные РТ, в которых компоненты, находясь в различных агрегатных состояниях, могут быть жидкими, твердыми или газообразными. Из-за сложности компоновки РД гибридные РТ используются ограниченно.

В РД МБР РВСН используются как высококипящие самовоспламеняющиеся ЖРТ (преимущественно, N2O4+H2NN(CH3)2), так и смесевые ТРТ. ЖРТ используются в РД ампулизированных ракет шахтного базирования, а ТРТ в РД ракет как шахтного, так и подвижного базирования.

Табл. 1. Основные характеристики двухкомпонентных ЖРТ при p к /p а =7/0,1 МПа

Горючее

Массовое

соотношение

окислитель: горючее

Температура

горения, К

Плотность,

кг/м 3

Удельный

импульс,

Нс/кг

Окислитель O 2

Гидразин

Окислитель N 2 O 4

Гидразин

Окислитель HNO 3

Гидразин

Окислитель Н 2 O 2

Гидразин

Табл. 2. Принципиальный состав и основные характеристики баллиститных ТРТ

Компоненты и

характеристики

Без энергетич.

добавок

С энергетическими добавками

Топливо для жидкостных ракетных двигателей, применяемых в составе космических разгонных блоков и ступеней ракетоносителей, содержит горючее на основе метана и окислитель, при этом в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. Применение предлагаемого топлива на ракетоносителях среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции ракетоносителя по сравнению с применением топлива метан + кислород на ~2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин + кислород масса выводимого полезного груза увеличится на ~ 7,5%.

Предлагаемое топливо предназначено для использования в жидкостных ракетных двигателях (ЖРД), применяемых в составе космических разгонных блоков (РБ) и ступеней ракетоносителей (РН). Аналогом данного топлива является топливо керосин+кислород . Жидкий кислород в настоящее время является одним из наиболее распространенных окислителей в топливах ЖРД. Это связано с тем, что жидкий кислород является экологически безопасным компонентом топлива. При этом он дешев, не токсичен, умеренно пожароопасен и обеспечивает достаточно высокие энергетические характеристики топлив. Например, топливо керосин+кислород при давлении в КС 70 ата и геометрической степени расширения сопла 40 обеспечивает удельный пустотный импульс на ~ 8% больший, чем топливо керосин+AT, где в качестве окислителя используется азотный тетраксид. Керосин представляет собой углеводородное горючее, являющееся смесью природных углеводородов, получаемых при перегонке нефти. Получение керосина из природной нефти обусловливает его относительную дешевизну. Кроме того, керосин является малотоксичным веществом, относящимся к 4-ому (низшему) классу опасности, умеренно пожароопасен и обладает достаточно высокой плотностью, что положительно сказывается на его эксплуатационных достоинствах. В целом топливо керосин+кислород, является эффективным топливом с достаточно высокой плотностью ~ 1000 кг/м 3 и достаточно высоким удельным импульсом истечения продуктов его сгорания, что позволяет достаточно эффективно решать существующие задачи, стоящие перед современными средствами выведения. К недостаткам топлива керосин+кислород относятся: относительно большая разница температур эксплуатации жидкого кислорода (~ 90 К) и керосина (~ 290 К), что требует принятия специальных мер, компенсирующих температурные напряжения, возникающие в баке хранения окислителя при заправке его жидким кислородом, и необходимость использования баков хранения компонентов с раздельными днищами и значительной теплоизоляцией между баками. Это ведет к существенному увеличению массы баков хранения компонентов и к увеличению объема, занимаемого баками хранения компонентов топлива в двигательной установке, что также увеличивает массовые затраты на хранение топлива. Прототипом предлагаемого топлива является топливо метан+кислород . Метан является основной составляющей природных газов, поэтому его производство, по оценкам, будет даже дешевле, чем производство керосина. По энергетическим характеристикам это топливо превосходит топливо керосин+кислород: при указанных выше давлениях в КС и геометрической степени расширения сопла удельный импульс топлива метан+кислород будет выше удельного импульса топлива керосин+кислород на ~ 4%. Однако метан даже при температуре 91 К (температура его плавления 90,66 К) обладает низкой плотностью 455 кг/м 3 , при этом плотность топлива метан+кислород всего 830 кг/м 3 , что приводит к увеличению массовых затрат на его хранение ввиду необходимости увеличения объема баков хранения компонентов. Низкая плотность топлива метан+кислород и невозможность переохлаждения кислорда при использовании баков хранения компонентов топлива с совмещенными днищами ведут к тому, что для космических РБ существенно (на 20% по сравнению с керосин+кислород) снижается время возможного хранения топлива в околоземном пространстве. Поскольку температура плавления метана выше температуры кипения кислорода при давлении 1 ата (т.е. выше 90 К), то использование баков хранения компонентов топлива с совмещенными днищами даже для кипящего при 1 ата кислорода (а тем более при использовании переохлажденного кислорода, который кипит при более низком давлении) невозможно без использования межбаковой теплоизоляции. Кроме того, поскольку бак горючего заправлен криогенным метаном, то его надо теплоизолировать от внешних теплопритоков, что дополнительно увеличивает массовые затраты на хранение топлива. Все это ведет к существенному по сравнению с топливом керосин+кислород увеличению массы и габаритов баков хранения топлива метан+кислород, что значительно, а в некоторых случаях вплоть до нуля, снижает эффект, который можно было бы получить от более высокого удельного импульса прототипа. Задачей изобретения является увеличение плотности топлива и, как следствие, массовых затрат на его хранение в топливных баках. Энергетические характеристики топлива при этом не ухудшаются по сравнению с прототипом. Это достигается при применении топлива, содержащего горючее и окислитель, где в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. При указанном содержании метана температура затвердевания такого горючего менее 90 К, т.е. при использовании в качестве окислителя, например, кипящего жидкого кислорода баки окислителя и горючего могут иметь общее днище, не покрытое теплоизоляцией. Кроме того, предлагаемое топливо для указанного интервала мольного соотношения метан - этилен будет иметь плотность от 900 до 970 кг/см 3 , что сравнимо с плотностью топлива керосин+кислород, а с учетом большой теплоемкости горючего в предлагаемом топливе возможное время пребывания космических РБ в околоземном пространстве будет таким же, как при использовании топлива керосин+кислород. При этом проведенные термодинамические расчеты показали, что удельный импульс продуктов истечения предлагаемого топлива будет таким же, как для топлива метан+кислород. Применение предлагаемого топлива на РН среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции РН по сравнению с применением топлива метан+кислород на ~ 2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин+кислород масса выводимого полезного груза увеличится на ~ 7,5%. Метан, как уже отмечалось выше, является основной составляющей природных газов, а этилен является широко распространенным сырьем для химической промышленности (например, при производстве полиэтилена), поэтому производство горючего для такого топлива не потребует создания новых производств и может быть освоено в достаточно короткие сроки. Стоимость предлагаемого топлива по оценкам будет сравнима со стоимостью топлива керосин+кислород. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Основы теории и расчета жидкостных ракетных двигателей /в 2-х книгах/ под ред. В. М. Кудрявцева, изд. 4-е перераб. и доп. - М. "Высшая школа", 1993. - кн.1, стр.130-134. 2. Паушкин Я. М. Химический состав и свойства реактивных топлив. - М. Издательство академии наук СССР, 1958.- 376 с., ил. стр.302. 3. Синярев Г.Б. Жидкостные ракетные двигатели. - М. Государственное издательство оборонной промышленности. 1955. -488 стр., ил. стр.159 - 161. 4. Справочник по физико-техническим основам криогеники. /М.П.Малков.- 3-е изд., перераб. и доп. - М.:Энергоатомиздат, 1985, -432 с., ил. стр.217. 5. Справочник по разделению газовых смесей методом глубокого охлаждения. /И. И. Гельперин. - 2-е изд., перераб. - М. Государственное научно-техническое издательство химической литературы, 1963. - 512 с., ил. стр.232. 6. Термодинамические и теплофизические свойства продуктов сгорания /в 3-х томах/ под ред. В.П. Глушко, - М. Всезоюзный институт научной и технической информации. 1968, т. 2, стр.177-308.

Формула изобретения

Топливо для жидкостных ракетных двигателей, содержащее горючее на основе метана и окислитель, отличающееся тем, что в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%.

Похожие патенты:

Изобретение относится к способу работы двигателя летательного аппарата, действующего по принципу реактивного движения

Изобретение относится к ракетно-космической технике и касается конструкции жидкостных ракетных двигателей (ЖРД), работающих на криогенном топливе, в частности двигателей ракетных блоков и космических аппаратов, использующих в качестве компонентов топлива криогенный окислитель жидкий кислород и углеводородное горючее

Вопрос снижения стоимости запусков ракет-носителей стоял всегда. Во времена космической гонки СССР и США мало задумывались о затратах - престиж страны стоил неизмеримо дороже. Сегодня сокращение расходов «по всем фронтам» стало общемировым трендом. Топливо составляет всего 0,2…0,3% от стоимости всей ракеты-носителя, но кроме стоимости топлива важен еще такой параметр, как его доступность. А здесь уже есть вопросы. За последние 50 лет список жидких горючих, широко использующихся в ракетно-космической отрасли мало изменился. Давайте же их перечислим: керосин, водород и гептил. Каждое из них имеет свои особенности и по-своему интересно, но у всех есть хотя бы один серьёзный недостаток. Вкратце рассмотрим каждое из них.

Керосин

Начал применяться ещё в 50-х годах и остаётся востребован и по сей день - именно на нём летают наша Ангара и Falcon 9 от SpaceX . Обладает множеством преимуществ, среди которых: высокая плотность, низкая токсичность, обеспечивает высокий удельный импульс, пока что приемлемая цена. Но производство керосина сегодня сопряжено с большими трудностями. Например, ракеты Союз, которые делают в Самаре, сейчас летают на искусственно созданном горючем, потому что изначально для создания керосина для этих ракет использовались только определенные сорта нефти из конкретных скважин. В основном это нефть Анастасиевско-Троицкого месторождения в Краснодарском крае. Но нефтяные скважины истощаются, и ныне используемый керосин является смешением композиций, которые добываются из нескольких скважин. Заветную марку РГ-1 получают с помощью дорогостоящей перегонки. По оценкам экспертов, проблема дефицита керосина будет только усугубляться.

«Ангара 1.1» на керосиновом двигателе РД-193

Водород

Сегодня водород, наряду с метаном, является одним из самых перспективных ракетных горючих. На нём летает сразу несколько современных ракет и разгонных блоков. В паре с кислородом он (после фтора) выдаёт самый высокий удельный импульс и для использования в верхних ступенях ракеты (или разгонных блоках) подходит идеально. Но чрезвычайно низкая плотность не позволяет в полной мере использовать его для первых ступеней ракет. Есть у него ещё один недостаток - высокая криогенность. Если ракета заправлена водородом, то он находится при температуре около 15 кельвинов (-258 по Цельсию). Это приводит к дополнительным затратам. Если сравнивать в керосином, то доступность водорода достаточно высока и его получение не является проблемой.

«Delta-IV Heavy» на водородных двигателях RS-68A

Гептил

Он же НДМГ или несимметричный диметилгидразин. У этого горючего всё ещё остаются сферы применения, но оно постепенно отходит на задний план. И причиной тому его высокая токсичность. Он обладает почти такими же, как керосин энергетическими показателями и является высококипящим компонентом (хранение при комнатной температуре) и, поэтому, в советское время использовался достаточно активно. Например, ракета Протон летает на высокотоксичной паре гептил+амил, каждый из которых способен убить человека, вдохнувшего по неосторожности их пары. Использование таких топлив в современное время неоправдано и является неприемлемым. Горючее находит применение в спутниках и межпланетных зондах, где оно, к сожалению, незаменимо.

«Протон-М» на гептиловых двигателях РД-253

Метан как альтернатива

Но есть ли топливо, которое удовлетворит всех и будет стоить дешевле всех? Возможно, это метан. Тот самый голубой газ, на котором некоторые из вас сегодня готовили пищу. Предлагаемое горючее является перспективным, активно осваивается другими отраслями промышленности, обладает более широкой сырьевой базой по сравнению с керосином и низкой стоимостью - это является важным моментом, учитывая прогнозируемые проблемы производства керосина. Метан как по плотности, так и по эффективности находится между керосином и водородом. Способы получения метана многочисленны. Главный источник метана природный газ, который состоит на 80..96% из метана. Остальное - это пропан, бутан и другие газы того же ряда, которые можно вообще не удалять, они очень схожи по свойствам с метаном. Другими словами, можно просто сжижать природный газ и использовать его как ракетное топливо. Метан можно получать и из других источников, например, переработкой отходов животноводства. Возможность использования метана в качестве ракетного топлива рассматривается уже на протяжении десятков лет, однако сейчас есть только стендовые варианты и экспериментальные образцы таких двигателей. Например, в химкинском НПО «Энергомаш» исследования в части использования сжиженного газа в двигателях велись с 1981 года. Прорабатываемая сейчас в «Энергомаше» концепция предусматривает разработку однокамерного двигателя тягой в 200 т на топливе «жидкий кислород - сжиженный метан» для первой ступени перспективного носителя легкого класса. Космическая техника ближайшего будущего обещает быть многоразовой. И тут открывается ещё одно преимущество метана. Он криогенный, а, значит, достаточно нагреть двигатель хотя бы до температуры -160 по Цельсию (а лучше выше) и двигатель сам освободится от компонентов топлива. По мнению специалистов он более всего подходит для создания многоразовых ракет-носителей. Вот что о метане думает главный конструктор НПО «Энергомаш» Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Ещё один довод в пользу использования метана - возможность добывать его на астероидах, планетах и их спутниках, обеспечивая возвращаемые миссии топливом. Там намного легче добывать метан, чем керосин. Естественно, о возможности привозить топливо с собой не может быть и речи. Перспектива таких дальних миссий, весьма отдалённая, но некоторые работы уже ведутся.

Будущее, которое так и не наступило

Так почему же метан в России так и не стал практически используемым горючим? Ответ достаточно прост. С начала 80-х в СССР, а потом и в России не было создано ни одного нового ракетного двигателя. Все российские «новинки» - это модернизация и переименование советского наследия. Единственный честно созданный комплекс - «Ангара» - с самого начала планировался как керосиновый транспорт. Его переделка обойдётся в копеечку. Вообще, Роскосмос постоянно отклоняет метановые проекты потому, что там связывают «добро» на хотя бы один подобный проект с «добром» на полную перестройку отрасли с керосина и гептила на метан, что считается долгим и дорогостоящим мероприятием.

Двигатели

На данный момент есть несколько компаний, заявляющих о скором использовании метана в своих ракетах. Двигатели, которые создаются:

FRE-1 /

Включайся в дискуссию
Читайте также
Бухучет инфо Где находится акт сверки в 1с
Где в 1 с 8.3 учетная политика. Учетная политика организаций в зависимости от системы налогообложения. Внесение дополнений и изменений в учетную политику
Как закрыть счет 90.09 вручную. Закрытие месяца: проводки и примеры. Прибыль отражается проводкой