Подпишись и читай
самые интересные
статьи первым!

Влияние концентраций реагирующих веществ на скорость реакции. Урок"Скорость химической реакции.Факторы, влияющие на скорость химической реакции". Молекулярность и порядок реакции

Химическая термодинамика дает сведения о возможности протекания реакции, но важно знать и скорость того или иного процесса. Химическая кинетика – это учение о скорости химических реакций, их механизме и закономерностях протекания во времени. Для определения скорости химической реакции надо знать не только начальное и конечное состояние системы, но и путь по которому протекает реакция, поэтому получить кинетические закономерности намного сложнее, чем термодинамические.

Скорость химической реакции показывает число химических взаимодействий, приводящих к образованию продуктов реакции в единицу времени в единице объема (для жидкой среды) или на единице поверхности, если процесс идет с участием твердого вещества. Отношение изменения концентрации реагирующих веществ к конечному (измеренному) промежутку времени называют средней скоростью.

V ср = ± ∆С / ∆t = ± (C конечное /С начальное) / (t конечное /t начальное), моль/(л∙c)

Если C конечное меньше, чем С начальное, то в выражении используют знак «-», если больше, то «+».

Истинная скорость - отношение изменения концентрации реагирующих веществ к бесконечно малому промежутку времени.

V ист = ± dС / dt, моль/(л∙c) – в системе СИ.

В медицине используются и другие единицы измерения скорости реакции, например, СОЭ – скорость оседания эритроцитов. Она измеряется высотой столбика эритроцитов, осевших в капилляре за час (норма ≈ 5 мм/час). Существует специальная дисциплина о кинетических закономерностях распределения лекарственных препаратов в организме – фармакокинетика. Она изучает распределение лекарств во времени, процессы всасывания, время метаболизма (вывода), связь между концентрацией и величиной терапевтического эффекта.

Влияние концентрации на скорость химической реакции.

Влияние концентрации на скорость химической реакции определяется законом действующих масс – при постоянной температуре скорость данной реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их стехиометрических коэффициентов.

aA + bB ↔ cC + dD

V пр = К пр ∙ [A] a ∙ [B] b

V обр = К обр ∙ [С] с ∙ [D] d

К – константа скорости реакции показывает число эффективных соударений (тех, что привели к реакции) в расчете на 1 моль реагирующих веществ. К зависит от температуры и природы вещества, но не зависит от концентрации.

В момент равновесия скорости прямой и обратной реакции равны.

К пр ∙ [A] a ∙ [B] b = К обр ∙ [С] с ∙ [D] d

К пр / К обр = ([С] с ∙[D] d) / ([A] a ∙[B] b) = К с – константа равновесия

Возьмем конкретную реакцию: N 2 + 3H 2 = 2NH 3 , тогда К с = 2 / [ H 2 ] 3 .

В уравнении закона действующих масс самой трудной для определения величиной является константа скорости. Для ее определения надо знать следующие понятия: порядок реакции и молекулярность.

Молекулярность определяется числом молекул, одновременным взаимодействием которых в момент столкновения осуществляется химическое превращение.

    Мономолекулярная: J 2 = 2J.

    Бимолекулярная: 2NO = N 2 O 2 .

    Тримолекулярная: Cl 2 + 2NO = 2NOCl

Показатель степени называется порядком по данному компоненту или частный порядок. Сумма частных порядков по всем компонентам – общий порядок.

Молекулярность и порядок совпадают только в одностадийных процессах. Они не совпадают, когда одно из реагирующих веществ взято в избытке и поэтому не участвует в определении порядка. Например:

СН 3 СООС 2 Н 5 + Н 2 О избыток ↔ СН 3 СООН + С 2 Н 5 ОН, V пр = К пр ∙ [СН 3 СООС 2 Н 5 ] ∙ [Н 2 О], бимолекулярная реакция первого порядка.

Если реакция проходит в несколько стадий, то порядок определяется по самой медленной – лимитирующей стадии.

    Для реакций первого порядка (разложение лекарственных средств).

К пр = 1/t ∙ ln(C o (х)/C(х))

t – время реакции, с.

С о (х) – начальная концентрация, моль/л.

С(х) – концентрация в момент t, моль/л.

    Для реакций второго порядка.

К пр = 1/t ∙ (1/C(х) – 1/C o (х))

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

На скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ;
  • концентрация реагирующих веществ;
  • поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях);
  • температура;
  • действие катализаторов.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние концентрации реагирующих веществ на скорость реакции

При повышении концентрации реагирующих веществ скорость реакции возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

К увеличению скорости реакции протекающей в газовой фазе приведет повышение давления или уменьшение объема, занимаемого смесью.

На основе экспериментальных данных в 1867 г. норвежские учёные К. Гульдберг, и П Вааге и независимо от них в 1865 г. русский учёный Н.И. Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ-

Закон действующих масс (ЗДМ) :

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции. («действующая масса» – синоним современного понятия «концентрация»)

аА + bВ = cС + dD, где k – константа скорости реакции

ЗДМ выполняется только для элементарных химических реакций, протекающих в одну стадию. Если реакция протекает последовательно через несколько стадий, то суммарная скорость всего процесса определяется самой медленной его частью.

Выражения для скоростей различных типов реакций

ЗДМ относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнение ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k.

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Скорость гетерогенных реакций

  • Зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов.
  • Пример — горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится.
  • Пирофорное железо высыпают на лист фильтровальной бумаги. За время падения частицы железа раскаляются и поджигают бумагу.

Влияние температуры на скорость реакции

В XIX веке голландский ученый Вант-Гофф опытным путем обнаружил, что при повышении температуры на 10 о С скорости многих реакций возрастают в 2-4 раза.

Правило Вант-Гоффа

При повышении температуры на каждые 10 ◦ С скорость реакции увеличивается в 2-4 раза.

Здесь γ (греческая буква «гамма») — так называемый температурный коэффициент или коэффициент Вант-Гоффа, принимает значения от 2 до 4.

Для каждой конкретной реакции температурный коэффициент определяется опытным путем. Он показывает, во сколько именно раз возрастает скорость данной химической реакции (и ее константа скорости) при повышении температуры на каждые 10 градусов.

Правило Вант-Гоффа используется для приближенной оценки изменения константы скорости реакции при повышении или понижении температуры. Более точное соотношение между константой скорости и температурой установил шведский химик Сванте Аррениус:

Чем больше E a конкретной реакции, тем меньше (при данной температуре) будет константа скорости k (и скорость) этой реакции. Повышение Т приводит к увеличению константы скорости, это объясняется тем, что повышение температуры приводит к быстрому увеличению числа «энергичных» молекул, способных преодолевать активационный барьер E a .

Влияние катализатора на скорость реакции

Можно изменить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации.

Катализаторы – это вещества, участвующие в химической реакции и увеличивающие ее скорость, но по окончании реакции остающиеся неизменными качественно и количественно.

Ингибиторы – вещества, замедляющие химические реакции.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом .

Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.

Обычно концентрацию выражают в моль/л, а время – в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1-0,6)/4=0,1 моль/(л*с).

Средняя скорость реакции вычисляется по формуле:

Скорость химической реакции зависит от:

    Природы реагирующих веществ.

Вещества с полярной связью в растворах взаимодействуют быстрей, это объясняется тем, что такие вещества в растворах образуются ионы, которые легко взаимодействуют друг с другом.

Вещества с неполярной и малополярной ковалентной связью реагируют с различной скоростью, это зависит от их химической активности.

H 2 + F 2 = 2HF (идёт очень быстро со взрывом при комнатной температуре)

H 2 + Br 2 = 2HBr (идет медленно, даже при нагревании)

    Величины поверхностного соприкосновения реагирующих веществ (для гетерогенных)

    Концентрации реагирующих веществ

Скорость реакции прямопропорциональна произведению концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов.

    Температуры

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа:

при повышении температуры на каждые 10 0 скорость большинства реакций увеличивается в 2-4 раза.

    Присутствия катализатора

Катализаторами называются вещества, изменяющие скорость химической реакций.

Явление изменения скорости реакции в присутствии катализатора называется катализом.

    Давления

При увеличение давления скорость реакции повышается (для гомогенных)

Вопрос№26. Закон действия масс. Константа скорости. Энергия активации.

Закон действия масс.

скорость, с которой вещества реагируют друг с другом, зависит от их концентрации

Константа скорости.

коэффициент пропорциональности в кинетическом уравнении химической реакции, выражающий зависимость скорости реакции от концентрации

Константа скорости зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Энергия активации.

энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные

Энергия активации зависит от природы реагирующих веществ и изменяется в присутствии катализатора.

Повышение концентрации увеличивается общее число молекул, а соответственно активных частиц.

Вопрос№27. Обратимые и необратимые реакции. Химическое равновесие, константа равновесия. Принцип Ле Шателье.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми.

Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

В уравнениях обратимых реакций между левой и правой частью ставят две стрелки, направленные в противоположные стороны. Примером такой реакции может служить синтез аммиака их водорода и азота:

3H 2 + N 2 = 2NH 3

Необратимыми называются такие реакции, при протекании которых:

    Образующиеся продукты выпадают в осадок, или выделяются в виде газа, например:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

    Образование воды:

HCl + NaOH = H 2 O + NaCl

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия .

Химическое равновесие – это состояние системы реагирующих веществ, при котором скорости прямой и обратной реакции равны между собой.

На состояние химического равновесия оказывает влияние концентрации реагирующих веществ, температура, а для газов – и давление. При изменении одного из этих параметров, химическое равновесия нарушается.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К. Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k1[A]равн[B]равн = k2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k1/k2 = К, то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = 2 равн/3равнравн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Пинцип Ле Шателье.

если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие, то равновесие смещается в сторону той реакции, которая противодействует этому воздействию.

На химическое равновесие влияет:

    Изменение температуры. При повышении температуры равновесие смещается в сторону эндотермической реакции. При понижении температуры равновесие смещается в сторону экзотермической реакции.

    Изменение давления. При повышении давления равновесие смещается в сторону уменьшения числа молекул. При понижении давления равновесие смещается в сторону увеличения числа молекул.

"

7.1. Гомогенные и гетерогенные реакции

Химические вещества могут находиться в разных агрегатных состояниях, при этом их химические свойства в разных состояниях одинаковы, однако активность отличается (что на прошлой лекции было показано на примере теплового эффекта химической реакции).

Рассмотрим различные комбинации агрегатных состояний, в которых могут находиться два вещества А и Б.

A (г.), Б (г.)

A (тв.), Б (тв.)

A (ж.), Б (тв.)

смешиваются

A(тв.), Б (г.)

A (ж.), Б (г.)

смешиваются

(раствор)

гетерогенная

гетерогенная

гетерогенная

гомогенная

гетерогенная

гетерогенная

гомогенная

Hg(ж.) + HNO3

H2 O + D2 O

Fe + O2

H2 S + H2 SO4

CO + O2

Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называется химическая система , в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется

гетерогенной.

Соответственно химическая реакция называется гомогенной , если реагенты находятся в одной фазе. Если реагенты находятся в разных фазах, то химическая реакция называется гетерогенной .

Нетрудно понять, что поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Таким образом, мы переходим к понятию скорость химической реакции .

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

7.2. Скорость химической реакции

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой .

Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Таким образом, если объем

или площадь

поверхности раздела фаз

не изменяются, то выражения для скоростей химических реакций имеют вид:

hom o

Отношение изменения количества вещества к объему системы можно интерпретировать как изменение концентрации данного вещества.

Отметим, что для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции – вообще-то величина положительная.

Дальнейшие умозаключения базируются на простых физических соображениях, которые рассматривают химическую реакцию как следствие взаимодействия нескольких частиц.

Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями.

В 1867 году для описания скорости химической реакции был предложен закон действующих масс : скорость элементарной химической реакции пропорциональная концентрациям реагирующих веществ в степенях стехиометрических коэффициентов. n A + m B P,

A, B – реагенты, P – продукты, n , m – коэффициенты.

W = k [ A ]n m

Коэффициент k называется константой скорости химической реакции,

характеризует природу взаимодействующих частиц и не зависит от концентрации частиц.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Величины n и m называются порядком реакции по веществу А и B соответственно, а

их сумма (n +m ) – порядком реакции .

Для элементарных реакций порядок реакции может быть 1, 2 и 3.

Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым , в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частиц W = k ).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скоростьлимитирующей стадией).

Представьте себе, что большое количество молекул пошли в бесплатный кинотеатр, но на входе стоит контролер, который проверяет возраст каждой молекулы. Поэтому в двери кинотеатра заходит поток вещества, а в кинозал молекулы проникают по одной, т.е. очень медленно.

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то там получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

В качестве иллюстрации посмотрим предсказательную силу химической кинетики.

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

Кинетическое уравнение первого порядка

(иллюстративный дополнительный материал)

Рассмотрим гомогенную реакцию первого порядка, константа скорости которой равна k , начальная концентрация вещества A равна [A]0 .

d [ A ]

По определению скорость гомогенной химической реакции равна

K [ A ]

изменению концентрации в единицу времени. Раз вещество A –

реагент, ставим знак «минус».

Такое уравнение называется дифференциальным (есть

d [ A ]

производная)

[ A ]

Для его решения в левую часть переносим величины

концентраций, а в правую – времени.

Если равны производные двух функций, то сами функции

должны отличаться не более, чем на константу.

Для решения данного уравнения берут интеграл левой части (по

концентрации) и правой части (по времени). Чтобы не пугать

ln[ A ] = −kt + C

слушателей, ограничимся ответом.

Значок ln – натуральный логарифм, т.е. число b, такое что

= [ A ] , e = 2,71828…

ln[ A ] - ln[ A ]0 = - kt

Константу C находят из начальных условий:

при t = 0 начальная концентрация равна [A]0

[ A ]

Раз логарифм –

это степень числа, используем свойства степеней

[ A ]0

e a− b =

Теперь избавимся от противного логарифма (см. определение

логарифма на 6-7 строчек выше),

для чего возведем число

в степень левой части уравнения и правой части уравнения.

[ A ]

E − kt

Умножим на [A]0

[ A ]0

Кинетическое уравнение первого порядка.

[ A ] = [ A ]0 × e − kt

На основании

полученного кинетического уравнения первого

порядка может

рассчитана

концентрация вещества

в любой момент времени

Для целей нашего курса данный вывод носит ознакомительный характер, для того чтобы продемонстрировать Вам применение математического аппарата для расчета хода химической реакции. Следовательно, грамотный химик не может не знать математику. Учите математику!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. График зависимости концентрации реагентов и продуктов от времени может быть качественно изображен следующим образом (на примере необратимой реакции первого порядка)

Факторы, которые влияют на скорость реакции

1. Природа реагирующих веществ

Например, скорость реакции следующих веществ: H2 SO4 , CH3 COOH, H2 S, CH3 OH – с гидроксид-ионом будет различаться в зависимости от прочности связи H-O. Для оценки прочности данной связи можно использовать величину относительного положительного заряда на атоме водорода: чем больше заряд, тем легче будет идти реакция.

2. Температура

Жизненный опыт подсказывает нам, что скорость реакции от температуры зависит и увеличивается с ростом температуры. Например, процесс скисания молока быстрее происходит при комнатной температуре, а не в холодильнике.

Обратимся к математическому выражению закона действующих масс.

W = k [ A ]n m

Раз левая часть этого выражения (скорость реакции) от температуры зависит, следовательно, правая часть выражения также зависит от температуры. При этом концентрация, разумеется, от температуры не зависит: например, молоко сохраняет свою жирность 2,5% и в холодильнике, и при комнатной температуре. Тогда, как говаривал Шерлок Холмс оставшееся решение и есть верное, каким бы странным оно ни казалось: от температуры зависит константа скорости!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Зависимость константы скорости реакции от температуры выражается посредством уравнения Аррениуса:

− E a

k = k0 e RT ,

в котором

R = 8,314 Дж·моль-1 ·К-1 – универсальная газовая постоянная,

E a – энергия активации реакции (см. ниже), её условно считают не зависящей от температуры;

k 0 – предэкспоненциальный множитель (т.е. множитель, который стоит перед экспонентой e ), величина которого тоже почти не зависит от температуры и определяется, в первую очередь, порядком реакции.

Так, величина k0 составляет примерно для реакции первого порядка 1013 с-1 , для реакции второго порядка – 10 -10 л·моль-1 ·с-1 ,

для реакции третьего порядка – 10 -33 л2 ·моль-2 ·с-1 . Эти значения запоминать не обязательно.

Точные значения k0 для каждой реакции определяют экспериментально.

Понятие энергии активации становится ясным из следующего рисунка. Фактически энергия активации представляет собой энергию, которой должна обладать реагирующая частица, для того, чтобы реакция произошла.

При этом если мы нагреваем систему, то энергия частиц повышается (пунктирный график), тогда как переходное состояние (≠) остается на прежнем уровне. Разница в энергии между переходным состоянием и реагентами (энергия активации) сокращается, а скорость реакции согласно уравнению Аррениуса возрастает.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Кроме уравнения Аррениуса, существует уравнение Вант-Гоффа, которое

характеризует зависимость скорости реакции от температуры посредством температурного коэффициента γ:

Температурный коэффициент γ показывает, во сколько раз вырастет скорость химической реакции при изменении температуры на 10o .

Уравнение Вант-Гоффа:

T 2 − T 1

W (T 2 ) = W (T 1 ) × γ 10

Обычно коэффициент γ находится в диапазоне от 2 до 4. По этой причине химики часто пользуются приближением, что увеличение температуры на 20o приводит к возрастанию скорости реакции на порядок (т.е. в 10 раз).

Разделы: Химия

Цель урока

  • обучающая: продолжить формирование понятия«скорость химических реакций», вывести формулы для вычисления скорости гомогенных и гетерогенных реакций, рассмотреть от каких факторов зависит скорость химических реакций;
  • развивающая: учить обрабатывать и анализировать экспериментальные данные; уметь выяснять взаимосвязь между скоростью химических реакций и внешними факторами;
  • воспитательная: продолжитьразвитие коммуникативных умений в ходе парной и коллективной работы; акцентировать внимание учащихся на важности знаний о скорости химической реакции протекающих в быту (коррозия металла, прокисание молока, гниение и др.)

Средства обучения: Д. мультимедийный проектор, компьютер, слайды по основным вопросам урока, CD-диск «Кирилл и Мефодий», таблицы на столах, протоколы лабораторной работы, лабораторное оборудование и реактивы;

Методы обучения: репродуктивный, исследовательский, частично поисковый;

Форма организации занятий: беседа, практическая работа, самостоятельная работа, тестирование;

Форма организации работы учащихся: фронтальная, индивидуальная, групповая, коллективная.

1. Организация класса

Готовность класса к работе.

2. Подготовка к основному этапу усвоения учебного материала. Активизация опорных знаний и умений (Слайд 1, см. презентацию к уроку).

Тема урока «Скорость химических реакций. Факторы, влияющие на скорость химической реакции».

Задача: выяснить, что есть скорость химической реакции, и от каких факторов она зависит. В ходе урока познакомимся с теорией вопроса по вышеназванной теме. На практике подтвердим некоторые наши теоретические предположения.

Прогнозируемая деятельность учеников

Активная работа учащихся показывает их готовность к восприятию темы урока. Нужны знания учащихся о скорости химической реакции из курса 9 класса (внутрипредметная связь).

Обсудим следующие вопросы (фронтально, слайд 2):

  1. Зачем нужны знания о скорости химических реакций?
  2. Какими примерами можно подтвердить то, что химические реакции протекают с различными скоростями?
  3. Как определяют скорость механического движения? Какова единица измерения этой скорости?
  4. Как определяют скорость химической реакции?
  5. Какие условия необходимо создать, чтобы началась химическая реакция?

Рассмотрим два примера (эксперимент проводит учитель).

На столе – две пробирки, в одной раствор щелочи (КOH), в другой – гвоздь; в обе пробирки приливаем раствор CuSO4. Что мы наблюдаем?

Прогнозируемая деятельность учеников

На примерах учащиеся судят о скорости реакций и делают соответствующие выводы. Запись на доске проделанных реакций (двое учащихся).

В первой пробирке реакция произошла мгновенно, во второй – видимых изменений пока нет.

Составим уравнения реакций (два ученика записывают на доске уравнения):

  1. CuSO 4 + 2КOH = Cu(OH) 2 + К 2 SO 4 ; Cu 2+ + 2OH - = Cu(OH) 2
  2. Fe + CuSO 4 = FeSO 4 + Cu ; Fe 0 + Cu 2+ = Fe 2+ + Cu 0

Какой вывод по проведённым реакциям мы можем сделать? Почему одна реакция идёт мгновенно, другая медленно? Для этого необходимо вспомнить, что есть химические реакции, которые протекают во всём объёме реакционного пространства (в газах или растворах), а есть другие, протекающие лишь на поверхности соприкосновения веществ (горение твёрдого тела в газе, взаимодействие металла с кислотой, солью менее активного металла).

Прогнозируемая деятельность учеников

По результатам демонстрированного эксперимента учащиеся делают вывод: реакция 1 – гомогенная, а реакция

2– гетерогенная.

Скорости этих реакций будут математически определяться по-разному.

Учение о скоростях и механизмах химических реакций называется химической кинетикой.

3. Усвоение новых знаний и способов действий (Слайд 3)

Скорость реакции определяется изменением количества вещества в единицу времени

В единице V

(для гомогенной)

На единице поверхности соприкосновения веществ S (для гетерогенной)

Очевидно, что при таком определении величина скорости реакции не зависит от объёма в гомогенной системе и от площади соприкосновения реагентов – в гетерогенной.

Прогнозируемая деятельность учеников

Активные действия учащихся с объектом изучения. Занесение таблицы в тетрадь.

Из этого следуют два важных момента (слайд 4):

2) рассчитанная величина скорости будет зависеть от того, по какому веществу её определяют, а выбор последнего зависит от удобства и лёгкости измерения его количества.

Например, для реакции 2Н 2 +О 2 = 2Н 2 О: υ (по Н 2) = 2 υ (по О 2) = υ (по Н 2 О)

4. Закрепление первичных знаний о скорости химической реакции

Для закрепления рассмотренного материала решим расчетную задачу.

Прогнозируемая деятельность учеников

Первичное осмысление полученных знаний о скорости реакции. Правильность решения задачи.

Задача (слайд 5). Химическая реакция протекает в растворе, согласно уравнению: А+В = С. Исходные концентрации: вещества А – 0,80 моль/л, вещества В – 1,00 моль/л. Через 20 минут концентрация вещества А снизилась до 0, 74 моль/л. Определите: а) среднюю скорость реакции за этот промежуток времени;

б) концентрацию вещества В через 20 мин. Решение (приложение 4 , слайд 6).

5. Усвоение новых знаний и способов действий (проведение лабораторной работы в ходе повторения и изучения нового материала, поэтапно, приложение 2).

Нам известно, что на скорость химической реакции влияют разные факторы. Какие?

Прогнозируемая деятельность учеников

Опора на знания 8-9 классов, запись в тетради по ходу изучения материала. Перечисляют (слайд 7):

Природа реагирующих веществ;

Температура;

Концентрация реагирующих веществ;

Действие катализаторов;

Поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях).

Влияние всех перечисленных факторов на скорость реакции можно объяснить, используя простую теорию – теорию столкновений (слайд 8). Основная идея её такова: реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.

Отсюда можно сделать выводы:

  1. Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  2. К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Но для этого частицы должны обладать достаточной энергией.

Минимальный избыток энергии (над средней энергией частиц в системе), необходимый для эффективного соударения частиц в системе), необходимый для эффективного соударения частиц реагентов, называется энергией активации Е а.

Прогнозируемая деятельность учеников

Осмысливание понятия и запись определения в тетрадь.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется некоторый энергетический барьер, равный энергии активации. Если он маленький, то находится много частиц, которые успешно его преодолевают. При большом энергетическом барьере необходима дополнительная энергия для его преодоления, иногда достаточно хорошего «толчка». Я зажигаю спиртовку – я сообщаю дополнительную энергию Е а, необходимую для преодоления энергетического барьера в реакции взаимодействия молекул спирта с молекулами кислорода.

Рассмотрим факторы , которые влияют на скорость реакции.

1) Природа реагирующих веществ (слайд 9).Под природой реагирующих веществ понимают их состав, строение, взаимное влияние атомов в неорганических и органических веществах.

Величина энергии активации веществ – это фактор, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Инструктаж.

Самостоятельная формулировка выводов (приложение 3 дома)

Включайся в дискуссию
Читайте также
Тема урока: « Бисквитное тесто и изделия из него Объяснение нового материала
гбоу нпо профессиональный лицей кулинарного мастерства солдатенкова и
Тест по английскому языку на определение уровня — Placement Test