Подпишись и читай
самые интересные
статьи первым!

Холодный ядерный реактор. Холодный ядерный синтез

Ученые, сделавшие сенсационное заявление, вроде бы имели солидную репутацию и вполне заслуживали доверия. Переселившийся в США из Великобритании член Королевского общества и экс-президент Международного общества электрохимиков Мартин Флейшман обладал международной известностью, заработанной участием в открытии поверхностно-усиленного рамановского рассеяния света. Соавтор открытия Стэнли Понс возглавлял химический факультет Университета Юты.

Пироэлектрический холодный синтез

Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Так, в 2005 году исследователи из Калифорнийского университета в Лос-Анджелесе сообщили в Nature, что им удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Его источником служило острие вольфрамовой иглы, подсоединенной к пироэлектрическому кристаллу танталата лития, при охлаждении и последующем нагревании которого создавалась разность потенциалов порядка 100−120 кВ. Поле напряженностью порядка 25 гигавольт/метр полностью ионизировало атомы дейтерия и так разгоняло его ядра, что при столкновении с мишенью из дейтерида эрбия они давали начало ядрам гелия-3 и нейтронам. Измеренный пиковый нейтронный поток при этом составил порядка 900 нейтронов в секунду (что в несколько сотен раз превышает типичное фоновое значение).
Хотя такая система имеет определенные перспективы в качестве генератора нейтронов, однако говорить о ней как об источнике энергии не имеет никакого смысла. И эта установка, и прочие подобные устройства потребляют намного больше энергии, нежели генерируют на выходе: в экспериментах Калифорнийского университета в одном цикле охлаждения-нагревания продолжительностью несколько минут выделялось примерно 10^(-8) Дж. Это на 11 порядков меньше, чем нужно, чтобы нагреть стакан воды на 1 градус Цельсия.

Источник дешевой энергии

Флейшман и Понс утверждали, что они заставили ядра дейтерия сливаться друг с другом при обычных температурах и давлениях. Их «реактор холодного синтеза» представлял собой калориметр с водным раствором соли, через который пропускали электрический ток. Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде — тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.

Палладий обладает уникальной способностью к поглощению водорода. Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков.


Ускоритель с нагреванием. Установка, использованная в экспериментах с холодным синтезом исследователей Калифорнийского университета в Лос-Анджелесе. При нагревании пироэлектрического кристалла на его гранях создается разность потенциалов, создающая электрическое поле высокой напряженности, в котором разгоняются ионы дейтерия.

Физики вносят ясность

Однако физики-ядерщики и специалисты по физике плазмы не спешили бить в литавры. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии (около 2,45 МэВ). Их нетрудно обнаружить либо непосредственно (с помощью нейтронных детекторов), либо косвенно (поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации). В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры.

Однако из этого ничего не вышло. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества (АФО), которая состоялась в Балтиморе 1 мая того же года.


Принципиальная схема установки пироэлектрического синтеза с показанным на нем кристаллом, эквипотенциальными линиями и траекториями ионов дейтерия. Заземленная медная сетка экранирует цилиндр Фарадея. Цилиндр и мишень заряжены до +40 В для сбора вторичных электронов.

Sic transit gloria mundi

От этого удара Понс и Флейшман уже не оправились. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество.

Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО.

Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования. Флейшман возвратился в Англию, где живет на пенсии. Понс отказался от американского гражданства и поселился во Франции.

Утром человек просыпается, включает тумблер – в квартире появляется электричество, которое греет воду в чайнике, дает энергию для работы телевизора и компьютера, заставляет светиться лампочки. Человек завтракает, выходит из дома и садится в машину, которая уезжает, не оставляя после себя привычного облака выхлопных газов. Когда человек решает, что надо заправиться, он покупает баллон с газом, который не пахнет, не токсичен и очень дешев - нефтепродукты больше не используются как топливо. Топливом стала океаническая вода. Это не утопия, это обычный день в мире, где человек освоил реакцию холодного ядерного синтеза.

В четверг, 22 мая 2008 года, группа японских физиков из Университета Осаки под руководством профессора Араты провела демонстрацию реакции холодного ядерного синтеза. Некоторые из присутствовавших на демонстрации ученых назвали ее успешной, однако большинство заявило, что для подобных утверждений необходимо независимо повторить опыт в других лабораториях. О заявлении японцев написало несколько физических изданий, однако наиболее уважаемые в научном мире журналы, такие как Science и Nature , пока не опубликовали своей оценки этого события. Чем объясняется такой скепсис научного сообщества?

Все дело в том, что холодный ядерный синтез с некоторых пор пользуется у ученых дурной славой. Несколько раз заявления об успешном проведении этой реакции на поверку оказывались фальсификацией либо неверно поставленным экспериментом. Чтобы понять, в чем трудность осуществления ядерного синтеза в лабораторных условиях, необходимо коротко коснуться теоретических основ реакции.

Куры и ядерная физика

Ядерный синтез - это реакция, при которой атомные ядра легких элементов сливаются, образуя ядро более тяжелого. При реакции выделяется огромное количество энергии. Это обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения, которые удерживают вместе входящие в состав ядра протоны и нейтроны. На маленьких расстояниях – около 10 -13 сантиметров - эти силы чрезвычайно сильны. С другой стороны, протоны в ядрах заряжены положительно, и, соответственно, стремятся оттолкнуться друг от друга. Радиус действия электростатических сил намного больше, чем у ядерных, поэтому когда ядра удалены друг от друга, первые начинают преобладать.

В обычных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы они смогли преодолеть электростатическое отталкивание и вступить в ядерную реакцию. Заставить атомы сблизиться можно, сталкивая их на большой скорости или используя сверхвысокие давления и температуры. Однако теоретически существует и альтернативный способ, позволяющий проводить желанную реакцию практически "на столе". Одним из первых идею осуществления ядерного синтеза при комнатной температуре высказал в 60-е годы прошлого века французский физик, лауреат Нобелевской премии Луис Кервран (Louis Kervran).

Ученый обратил внимание на тот факт, что куры, не получающие кальция с пищей, тем не менее несут нормальные яйца, покрытые скорлупой. В скорлупе, как известно, содержится очень много кальция. Кервран заключил, что куры синтезируют его у себя в организме из более легкого элемента – калия. В качестве места протекания реакций ядерного синтеза физик определил митохондрии – внутриклеточные энергетические станции. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза.

Две почти детективные истории

В 1989 году Мартин Флейшман и Стэнли Понс объявили о том, что им удалось покорить природу и заставить дейтерий превратиться в гелий при комнатной температуре в приборе для электролиза воды. Схема эксперимента была следующей: в подкисленную воду опускали электроды и пропускали ток – обычный опыт по электролизу воды. Однако ученые использовали необычную воду и необычные электроды.

Вода была "тяжелой". То есть, легкие ("обычные") изотопы водорода в ней были заменены на более тяжелые, содержащие помимо протона еще и один нейтрон. Такой изотоп называется дейтерием. Кроме того, Флейшман и Понс использовали электроды, сделанные из палладия. Палладий отличает удивительная способность "впитывать" в себя большое количество водорода и дейтерия. Число атомов дейтерия в палладиевой пластине может сравниться с числом атомов самого палладия. В своем эксперименте физики использовали электроды, предварительно "насыщенные" дейтерием.

При прохождении электрического тока через "тяжелую" воду образовывались положительно заряженные ионы дейтерия, которые под действием сил электростатического притяжения устремлялись к отрицательно заряженному электроду и "врезались" в него. При этом, как были уверены экспериментаторы, они сближались с уже находящимися в электродах атомами дейтерия на расстояние, достаточное для протекания реакции ядерного синтеза.

Доказательством протекания реакции стало бы выделение энергии – в данном случае это выразилось бы в увеличении температуры воды - и регистрация потока нейтронов. Флейшман и Понс заявили, что в их установке наблюдалось и то и другое. Сообщение физиков вызвало чрезвычайно бурную реакцию научного сообщества и прессы. СМИ расписывали прелести жизни после повсеместного внедрения холодного ядерного синтеза, а физики и химики по всему миру принялись перепроверять их результаты.

Поначалу в нескольких лабораториях вроде бы смогли повторить эксперимент Флейшмана и Понса, о чем радостно сообщали газеты, однако постепенно стало выясняться, что при одних и тех же начальных условиях разные ученые получают совершенно несхожие результаты. После перепроверки расчетов выяснилось, что если бы реакция синтеза гелия из дейтерия шла бы так, как описали физики, то выделившийся поток нейтронов должен был бы немедленно убить их. Прорыв Флейшмана и Понса оказался просто неграмотно поставленным экспериментом. И заодно научил исследователей доверять только результатам, сначала опубликованным в рецензируемых научных журналах, и только потом в газетах.

После этой истории большинство серьезных исследователей прекратили работы по поиску путей осуществления холодного ядерного синтеза. Однако в 2002 году эта тема снова всплыла в научных дискуссиях и прессе. На сей раз с претензией на покорение природы выступили физики из США Рузи Талейархан (Rusi Taleyarkhan) и Ричард Лейхи (Richard T. Lahey, Jr.). Они заявили, что смогли добиться необходимого для реакции сближения ядер, используя не палладий, а эффект кавитации.

Кавитацией называют образование в жидкости полостей, или пузырьков, заполненных газом. Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии. Как пузырьки могут помочь в ядерном синтезе? Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию – что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез.

Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода (протий) был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития – еще одного продукта ядерного синтеза.

Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно. На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов. Талейархан и Лейхи переставили опыт с учетом полученных замечаний – и снова получили тот же результат. Тем не менее, авторитетный научный журнал Nature в 2006 году опубликовал , в которой высказывались сомнения в достоверности результатов. Фактически, ученых обвинили в фальсификации.

В Университете Пердью, куда перешли работать Талейархан и Лейхи, было проведено независимое расследование. По его итогам был вынесен вердикт: эксперимент поставлен верно, ошибки или фальсификации не обнаружено. Несмотря на это, пока в Nature не появилось опровержения статьи, а вопрос о признании кавитационного ядерного синтеза научным фактом повис в воздухе.

Новая надежда

Но вернемся к японским физикам. В своей работе они использовали уже знакомый палладий. Точнее, смесь палладия с оксидом циркония. "Дейтериевая емкость" этой смеси, по утверждениям японцев, еще выше, чем у палладия. Ученые пропускали дейтерий через ячейку, содержащую эту смесь. После добавления дейтерия температура внутри ячейки поднялась до 70 градусов по Цельсию. По словам исследователей, в этот момент в ячейке происходили ядерные и химические реакции. После того как поступление дейтерия в ячейку прекратилось, температура внутри нее оставалась повышенной еще в течение 50 часов. Физики утверждают, что это свидетельствует о протекании внутри ячейки реакций ядерного синтеза - из атомов дейтерия, сблизившихся на достаточное расстояние, образовывались ядра гелия.

Пока рано говорить, правы японцы или нет. Эксперимент должен быть неоднократно повторен, а результаты проверены. Скорее всего, несмотря на скепсис, многие лаборатории займутся этим. Тем более что руководитель исследования – профессор Йошиаки Арата (Yoshiaki Arata) – очень уважаемый физик. О признании заслуг Араты свидетельствует тот факт, что демонстрация работы прибора проходила в аудитории, носящей его имя. Но, как известно, ошибаться могут все, особенно тогда, когда очень хотят получить вполне определенный результат.

Холодный термоядерный синтез известен как одна из крупнейших научных мистификаций XX века. Долгое время большинство физиков отказывались обсуждать даже саму возможность подобной реакции. Однако недавно два итальянских ученых представили публике установку, которая, по их словам, легко его осуществляет. Неужели этот синтез все-таки возможен?

В начале нынешнего года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H 2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Именно поэтому многие ученые на протяжении всего XX века пытались осуществить термоядерную реакцию синтеза при низких температурах и обычном давлении, то есть тот самый холодный термояд. Первое сообщение о том, что это возможно, появилось 23 марта 1989 года, когда профессор Мартин Флейшман и его коллега Стенли Понс провели в своем Университете штата Юта пресс-конференцию, где сообщили о том, как они путем почти обычного пропускания тока через электролит получили положительный энергетический выход в виде тепла и зафиксировали идущее от электролита гамма-излучение. То есть провели реакцию холодного термоядерного синтеза.

В июне того же года ученые послали статью с результатами эксперимента в Nature, однако вскоре вокруг их открытия разгорелся настоящий скандал. Дело в том, что исследователи из ведущих научных центров США, Калифорнийского и Массачусетского технологических институтов, в деталях повторили этот эксперимент и подобного не обнаружили. Правда потом последовали два подтверждения, сделанные учеными из Техасского университета "Эй энд Эм" и Института технологических исследований штата Джорджия. Однако и с ними тоже получился конфуз.

При постановке контрольных экспериментов выяснилось, что электрохимики из Техаса неправильно истолковали результаты опыта — в их эксперименте повышенное выделение тепла было вызвано электролизом воды, поскольку термометр служил в качестве второго электрода (катода)! В Джорджии же нейтронные счетчики оказались настолько чувствительными, что реагировали на тепло поднесенной руки. Именно так и был зарегистрирован "выброс нейтронов", который исследователи сочли результатом реакции термоядерного синтеза.

В результате всего этого многие физики преисполнились уверенностью в том, что никакого холодного термояда нет и не может быть, а Флейшман и Понс просто-напросто смошенничали. Тем не менее, другие (а их, к сожалению, явное меньшинство) не верят в мошенничество ученых и даже в то, что здесь была просто ошибка, и надеются, что чистый и практически неисчерпаемый источник энергии сможет быть сконструирован.

К числу последних относится и японский ученый Йосиаки Арата, который несколько лет исследовал проблему холодного термояда и в 2008 году провел в Университете Осака публичный эксперимент, показавший возможность протекания термоядерного синтеза при невысоких температурах. Он и его коллеги использовали особые структуры, состоящие из наночастиц.

Это были специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная их особенность состояла в том, что они имели внутри обширные пустоты, в которые можно закачивать атомы дейтерия (изотоп водорода) до очень высокой концентрации. И когда эта концентрация превысила определенный предел, данные частицы сблизились друг с другом настолько, что начали сливаться, в результате чего запустилась настоящая термоядерная реакция. Она заключалась в слиянии двух атомов дейтерия в атом лития-4 с выделением тепла.

Доказательством этого служило то, что когда профессор Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению ученого, это можно было объяснить только тем, что произошел ядерный синтез.

Правда, пока эксперимент Араты также не удалось повторить ни в одной лаборатории. Поэтому многие физики продолжают считать холодный термояд мистификацией и шарлатанством. Однако сам Арата отрицает подобные обвинения, упрекая оппонентов в том, что они не умеют работать с наночастицами, поэтому-то у них ничего и не получается.

10:00 — REGNUM

Предисловие редакции

Любое фундаментальное открытие можно использовать и с пользой, и во вред. Ученый рано или поздно сталкивается с необходимостью ответа на вопрос: открывать или не открывать «ящик Пандоры», публиковать или не публиковать потенциально разрушительное открытие. Но это далеко не единственная моральная проблема, с которой приходится сталкиваться их авторам.

Для авторов крупных открытий существуют и более приземлённые, но не менее труднопреодолимые препятствия на пути к всеобщему признанию, связанные с корпоративной этикой научного сообщества — неписаными правила поведения, нарушение которых жестко карается, вплоть до изгнания. Более того, эти правила, зачастую используются в качестве повода для оказания давления на ученых, «слишком далеко» продвинувшихся в своих исследованиях и посягнувших на постулаты современной научной картины мира. Сначала их работы отказываются публиковать, потом обвиняют в нарушении правил, потом ставят клеймо лженаучности.

Узнал ученого ответ.

Что не по вас — того и нет.

Что не попало в ваши руки —

Противно истинам науки.

Чего учёный счесть не мог —

То заблужденье и подлог.

О тех же, кто выдерживает и побеждает, впоследствии говорят: «Они слишком опередили свое время».

Именно в такой ситуации оказались Мартин Флейшман и Стенли Понс, которые обнаружили протекание ядерных реакций при «обычном» электролизе раствора дейтерированного гидроксида лития в тяжелой воде с палладиевым катодом. Их открытие, названное «холодным ядерным синтезом» , вот уже 30 лет будоражит научное сообщество, которое разделилось на сторонников и противников холодного термояда. В памятном 1989 году, после пресс-конференции М. Флейшмана и С. Понса, реакция была быстрой и жесткой: они нарушили научную этику, обнародовав недостоверные результаты, которые даже не прошли рецензирования в научном журнале .

За шумихой, поднятой газетчиками, никто не обратил внимания на то, что к моменту пресс-конференции научная статья М. Флейшмана и С. Понса прошла рецензирование и была принята к печати в американском научном журнале The Journal of Electroanalytical Chemistry. На это странным образом выпавшее из поля зрения мирового научного сообщества обстоятельство обращает внимание в публикуемой ниже статье Сергей Цветков.

Но не менее загадочно и то, что сами Флейшман и Понс, насколько нам известно, никогда не протестовали по поводу их «оговора» в нарушении научной этики. Почему? Конкретные детали неизвестны, но напрашивается вывод, что исследования холодного ядерного синтеза пытались неуклюже засекретить.

Флейшман и Понс не единственные учёные, которым было сделано прикрытие под видом лженауки. Например, подобная «подпорченная» холодным синтезом биография придумана и для одного из самых рейтинговых физиков мира из Массачусетского технологического института Питера Хагельштейна (см. ), создателя американского рентгеновского лазера в рамках программы СОИ.

Именно в этой сфере разворачивается настоящая научно-технологическая гонка века. Мы убеждены, что именно в области исследований холодного ядерного синтеза (ХЯС) и низкоэнергетических ядерных реакций (НЭЯР) будут созданы технологии нового уклада, которым суждено либо преобразить мир, либо открыть «ящик Пандоры».

В том, что известно, пользы нет,

Одно неведомое нужно.

И. Гёте. «Фауст».

Введение

История начала и развития исследований холодного ядерного синтеза по-своему трагична и поучительна, и, как всякая история, она ни на что не похожа и относится скорее к опыту будущих поколений. Своё отношение к холодному ядерному синтезу я бы сформулировал так: если бы холодного синтеза не было, его стоило бы придумать .

Как непосредственный участник многих описанных ниже событий, должен констатировать факт: чем больше проходит времени с момента рождения холодного ядерного синтеза, тем больше в средствах массовой информации и в интернете обнаруживается фантазий, мифов, искажений фактов, намеренных подлогов и глумления над авторами выдающегося открытия. Порой доходит до откровенного вранья. Надо с этим что-то делать! Я выступаю за восстановление исторической справедливости и установление истины, ибо разве не поиск и сохранение истины основная задача науки? История обычно сохраняет несколько описаний важного события, сделанных его непосредственными участниками и внешними наблюдателями. У каждого из описаний свои недостатки: одни за деревьями не видят леса, другие слишком поверхностны и тенденциозны, одни сделаны победителями, другие побеждёнными. Моё описание — это взгляд изнутри истории, которая далека от завершения.

Свежие примеры «заблуждений» о ХЯС — ничего нового!

Рассмотрим несколько примеров утверждений о холодном синтезе, сделанных за последние годы в российских СМИ. Красным курсивом в них отмечена ложь, а жирным красным курсивом ложь явная.

«Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты М. Флейшмана и С. Понса, но опять же безрезультатно . Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества (АФО), которая состоялась в Балтиморе 1 мая того же года ».

2. Евгений Цыганков в статье « », опубликованной 08 декабря 2016 года на сайте российского отделения американского общественного движения The Brights, объединяющего «людей с натуралистическим мировоззрением» , которые ведут борьбу с религиозными и сверхъестественными представлениями, приводит следующую версию событий:

«Холодный синтез? Немного обратимся к истории.

Датой рождения холодного синтеза можно считать 1989 год. Тогда в англоязычной прессе была обнародована информация о сообщении Мартина Флейшмана и Стенли Понса (Martin Fleischmann and Stanley Pons), в котором заявлялось об осуществлении ядерного синтеза в следующей установке: по палладиевым электродам , опущенным в тяжёлую воду (с двумя атомами дейтерия вместо водорода, D 2 O), проходит ток, в результате чего один из электродов плавится . Флейшман и Понс дают такую трактовку происходящему : электрод плавится в результате выделения слишком большой энергии , источником которой является реакция слияния ядер дейтерия. Ядерный синтез, таким образом, якобы происходит при комнатной температуре . Журналисты назвали явление cold fusion, в русскоязычном варианте холодный синтез стал почему-то «холодным термоядом» , хотя фраза содержит явное внутреннее противоречие. И если в некоторых СМИ новоявленный холодный синтез могли встречать тепло , то в научном сообществе к заявлению Флейшмана и Понса отнеслись весьма прохладно . На состоявшейся менее чем через месяц международной встрече , на которую был приглашён и Мартин Флейшман, заявление было критически рассмотрено . Самые простые соображения указывали на невозможность протекания в такой установке ядерного синтеза . Например, в случае реакции d + d → 3 He + n для мощностей , о которых шла речь в установке Понса и Флейшмана, имел бы место поток нейтронов, в течение часа обеспечивающий экспериментатору смертельную дозу облучения. Присутствие самого Мартина Флейшмана на встрече прямым образом указывало на фальсификацию результатов . Тем не менее в ряде лабораторий поставили аналогичные опыты, по итогам которых никаких продуктов реакций ядерного синтеза обнаружено не было . Это, однако, не помешало одной сенсации породить целое сообщество адептов холодного синтеза, которое функционирует по своим правилам и по сей день ».

3. На телеканале «Россия К» в программе «Тем временем» с Александром Архангельским в конце октября 2016 года в выпуске « » было сказано:

«Президиум Российской академии наук утвердил новый состав Комиссии по борьбе с лженаукой и фальсификацией научных исследований. Теперь в её состав входят 59 учёных, среди которых физики, биологи, астрономы, математики, химики, представители гуманитарных специальностей и специалисты по сельскому хозяйству. Когда в 1998 году академик Виталий Гинзбург выступил с инициативой создания комиссии, псевдонаучные концепции особенно досаждали физикам и инженерам. Тогда были популярны фантазии о новых источниках энергии и преодолении основных физических законов. Комиссия последовательно разгромила учения о торсионных полях, холодном ядерном синтезе и антигравитации . Самым громким делом было разоблачение в 2010 году изобретения Виктора Петрика нанофильтров для очистки радиоактивной воды».

4. Доктор химических наук, профессор Алексей Капустин в телевизионной программе канала НТВ «Мы и наука, наука и мы: Управляемая термоядерная реакция » 26 сентября 2016 года заявил:

«Огромный ущерб термоядерному синтезу наносят постоянно появляющиеся сообщения о так называемом холодном ядерном синтезе , т. е. синтезе, который проходит не при миллионах градусов, а, скажем, при комнатной температуре на лабораторном столе. Сообщение от 1989 года о том, что удалось произвести во время электролиза на палладиевых катализаторах новые элементы , что произошло слияние атомов водорода в атомы гелия — это было подобно этакому информационному взрыву. Да, открытие, в кавычках «открытие» этих учёных ничем не подтвердилось . Это наносит ущерб репутации термоядерного синтеза ещё и потому, что бизнес легко реагирует на вот эти вот странные скандальные запросы, надеясь на быструю лёгкую прибыль, он субсидирует стартапы , посвященные холодному синтезу. Ни один из них не подтвердился. Это абсолютная псевдонаука, но, к сожалению, разработкам настоящего термоядерного синтеза это очень вредит ».

5. Денис Стригун в статье, название которой уже само по себе является дезинформацией — «Термоядерный синтез: чудо, которое случается », в главе «Холодный ядерный синтез» пишет:

«Каким бы крошечным он ни был, а шанс сорвать куш в «термоядерную » лотерею будоражил всех, не только физиков. В марте 1989 года два достаточно известных химика , американец Стэнли Понс и британец Мартин Флейшман, собрали журналистов, чтобы явить миру «холодный» ядерный синтез. Работал он так . В раствор с дейтерием и литием помещался палладиевый электрод, и через него пропускали постоянный ток . Дейтерий и литий поглощались палладием и, сталкиваясь , иногда «сцеплялись» в тритий и гелий-4 , вдруг резко нагревая раствор . И это при комнатной температуре и нормальном атмосферном давлении .

Во-первых, подробности эксперимента появились в The Journal of Electroanalytical Chemistry and Interfacial Electrochemistry только в апреле, спустя месяц после пресс-конференции. Это противоречило научному этикету .

Во-вторых, у специалистов по ядерной физике к Флейшману и Понсу возникло много вопросов . Например, почему в их реакторе столкновение двух дейтронов дает тритий и гелий-4 , когда должно давать тритий и протон или нейтрон и гелий-3 ? Причем проверить это было просто: при условии, что в палладиевом электроде происходил ядерный синтез, от изотопов «отлетали» бы нейтроны с заранее известной кинетической энергией. Но ни датчики нейтронов , ни воспроизведение эксперимента другими учеными к таким результатам не привели . И за недостатком данных уже в мае сенсация химиков была признана «уткой» .

Классификация вранья

Попробуем систематизировать претензии, на которых базируется отказ научной общественности в признании открытия Мартином Флейшманом и Стенли Понсом явления холодного ядерного синтеза. Выше приведены лишь несколько примеров типичных суждений о холодном синтезе, повторяющихся в сотнях публикаций по всему миру. Причём, заметьте, речь идет именно о претензиях, а не научных аргументах и доказательствах, опровергающих это явление. Такие претензии тиражируются так называемыми экспертами, которые никогда сами не занимались повторением и проверкой явления холодного ядерного синтеза.

Типовая претензия №1. Пресс-конференция состоялась раньше, чем публикация статьи в научном журнале. Как неприлично — это же нарушение научной этики!

Типовая претензия №2 . Да вы что? Этого быть не может! Мы тут десятки лет бьемся с термоядерным синтезом и никак не можем получить никакого превышения избыточного тепла при сотнях миллионов градусов в плазме, а вы нам тут про комнатную температуру говорите и МегаДжоули тепла сверх вложенной энергии? Чушь!

Типовая претензия №3 . Если бы такое было возможно, то вы все (исследователи холодного синтеза) давно были бы на кладбище!

Типовая претензия №4. Вон в КалТехе (Калифорнийский технологический институт) и в МИТе (Массачусетский технологический институт) не получается. Врёте вы всё!

Типовая претензия №5 . Они ещё и денег хотят на продолжение этих работ просить? А у кого эти деньги отнимут?

Типовая претензия №6 . Не бывать этому, пока мы живы! Гнать «мошенника» Стенли Понса из университета и США!

Надо сказать, что такой же сценарий пытались повторить в начале 2000-х с профессором университета Пердью Рузи Талейарханом за его пузырьковый «термояд», но дело дошло до суда, и профессора восстановили в правах и должности.

Здесь нельзя не упомянуть о деятельности уникальной Комиссии по борьбе с лженаукой и фальсификацией научных исследований при Президиуме Российской академии наук. Комиссия по лженауке уже успела «наградить себя» «за последовательный разгром торсионных полей, холодного ядерного синтеза и антигравитации» , видимо, посчитав, что многократно повторяемые требования не давать бюджетных денег неучам и авантюристам от холодного синтеза (см., например, раздел Конференции и симпозиумы журнала «Успехи физических наук» том 169 № 6 за 1999 год) и есть разгром холодного ядерного синтеза? Согласитесь, это странный способ ведения научной дискуссии, особенно в сочетании с рассылкой в редакции российских научных журналов указаний, запрещающих публиковать научные статьи, где хоть раз упоминаются слова «холодный ядерный синтез».

Автор имеет печальный опыт попыток публикаций результатов своих исследований, по крайней мере, в двух российских академических журналах. Будем надеяться, что новое руководство РАН соберёт наконец-то последние остатки утекающих на Запад мозгов и пересмотрит своё отношение к науке как к основе для развития, а не деградации общества, и ликвидирует, наконец, позорящую российскую науку и РАН Комиссию по лженауке.

Замечание о цене вопроса

Прежде чем разбираться с этими претензиями, попробуем оценить преимущества ядерного синтеза перед другими способами получения энергии, известными на сей момент. Возьмём количество выделившейся энергии на один грамм реагирующего вещества. Именно реагирующего вещества, а не материала, в котором эти реакции происходят.

Для начала взглянем на таблицу количества выделяющейся энергии на один грамм реагирующего вещества при различных способах получения энергии и произведем нехитрые арифметические действия, сравнивая эти количества энергии.

Эти данные можно получить из и представить в виде таблицы:

Способ получения энергии

кВт-ч/кг

кДж/г

Во сколько раз больше предыдущего

При полном сжигании нефти (угля)

При делении урана-235

При синтезе ядер водорода

При полном выделении энергии вещества по формуле E = m·c 2

Получается, что при сжигании нефти или высококачественного угля можно получить 42 кДж/г тепловой энергии. При делении урана-235 выделяется уже 82,4 ГДж/г тепла, при синтезе ядер водорода выделится 423 ГДж/г, а по теории 1 грамм любого вещества может дать при полном освобождении энергии до 104,4 ТДж/г (к — это кило = 10 3 , Г — Гига = 10 9 , Т — Тера = 10 12).

И сразу же вопрос о том, надо ли заниматься добычей энергии из воды, у любого здравомыслящего человека отпадает сам собой. Есть большое подозрение, что, освоив способ получения энергии при синтезе ядер водорода, нам останется всего лишь один шаг до полного выделения энергии вещества по знаменитой формуле E = m·c 2 !

Итальянец Андреа Росси показал, что для холодного ядерного синтеза можно использовать простой водород, имеющийся в неисчерпаемых количествах на планете Земля, да и в космосе. Это открывает ещё больше возможностей для энергетики, и пророческими становятся слова Жюля Верна в его «Таинственном острове», опубликованные ещё в 1874 году:

«…Я думаю, что воду когда-нибудь будут употреблять как топливо, и что водород и кислород, которые входят в её состав, будут использованы вместе или отдельно и явятся неисчерпаемым источником света и тепла, значительно более интенсивным, чем уголь. …я думаю, что, когда залежи каменного угля истощатся, человечество будет отапливаться и греться водой. Вода — уголь будущего».

Ставлю три восклицательных знака великому фантасту!!!

Стоит заметить, что, добывая водород для холодного ядерного синтеза из воды, человечество в виде бонуса будет получать кислород, необходимый для жизни.

ХЯС или НЭЯР ? ColdFusion or LENR?

В конце 90-х разгромленные остатки учёных, которые по собственной любознательности втихую продолжили заниматься повторением экспериментов М. Флейшмана и С. Понса, решили спрятаться от яростных нападок «токамафии» и созданной в России Комиссии по борьбе с лженаукой в Российской академии наук и занялись низкоэнергетическими ядерными реакциями.

Переименование холодного синтеза в низкоэнергетические ядерные реакции — это, конечно, слабость. Это попытка спрятаться, чтобы «не убили», это проявление инстинкта самосохранения. Всё это показывает серьёзность степени угрозы не только для занятий профессией, но и самой жизни.

Андреа Росси понимает, что его деятельность по продвижению его энергетического катализатора (E-cat) представляет угрозу для его жизни. Поэтому его поступки многим кажутся нелогичными. Но так он защищает себя. Я впервые и, пожалуй, единственный раз, увидел в Цюрихе в 2012 году, как человек, который занимается разработкой и внедрением новой энергетической технологии, входил в собрание учёных и инженеров в сопровождении телохранителя, одетого в бронежилет.

Давление со стороны академических группировок в науке настолько сильное и агрессивное, что холодным синтезом могут сейчас заниматься только полностью независимые люди, например, пенсионеры. Остальные интересующиеся просто выдавливаются из лабораторий и университетов. Тенденция эта чётко просматривается в мировой науке по сегодняшний день.

Подробности открытия

Ну, да ладно. Вернемся к нашим электрохимикам. Хочется кратко напомнить содержание научной статьи М. Флейшмана и С. Понса в рецензируемом журнале с конкретными результатами. Эта информация взята из реферативного журнала Всесоюзного института научной и технической информации (РЖ ВИНИТИ) Академии наук СССР, издаваемого с 1952 года, — периодического научно-информационного издания, в котором публикуются рефераты, аннотации и библиографические описания отечественных изарубежных публикаций в области естественных, точных и технических наук, экономики и медицины. Конкретно — РЖ 18В Ядерная физика. — 1989.-6.-реф.6В1.

«Электро-химически индуцированный ядерный синтез дейтерия. Electrосhеmicallу induced nuclear fusion of deuterium / FlеisсhmаnnМаrtin, Роns Stanlеу // J. of Elecroanal. Chem. — 1989. — Vol.261. — No.2а. — рр.301−308. — англ.

В университете штата Юта (США) выполнен эксперимент, направленный на

обнаружение факта протекания ядерных реакций

в условиях, когда дейтерий внедрен в металлическую решетку палладия, что означает «эффективное увеличение давления, сближающего дейтроны, за счет химических сил», способствующее увеличению вероятности квантово-механического туннелирования дейтронов сквозь кулоновский барьер DD-пары в междоузлии решетки палладия. Электролитом служит раствор 0,1 моля LiOD в воде состава 99,5% D 2 O + 0,5% H 2 O. В качестве катода использовали палладиевые (Pd) стержни диаметром 1¸8 мм и длиной 10 см, обвитые платиновой проволокой (Pt-анод). Плотность тока варьировали в пределах 0,001÷1 A/см 2 при напряжении на электродах 12 B. Нейтроны в эксперименте регистрировались двумя способами. Во-первых, сцинтилляционным детектором, включающим дозиметр с борными ВF 3 счетчиками (эффективность 2×10 -4 для нейтронов энергии 2,5 МэВ). Во-вторых, способом регистрации гамма-квантов, которые образуются при захвате нейтрона ядром водорода обычной воды, окружающей электролитическую ячейку, по реакции:

Детектором служил кристалл NaI (Tl), регистратором — многоканальный амплитудный анализатор ND-6. Проводили коррекцию фона путем вычитания спектра, получаемого на расстоянии 10 м от водяной бани. Тритоны (T) извлекались из электролита с помощью поглотителя специального типа (пленка Parafilm), и затем регистрировался их b-распад на сцинтилляционном счетчике Бекмана (эффективность 45%). Наилучшие результаты достигнуты на Рd-катоде диаметром 4 мм и длиной 10 см при плотности тока через электролизер 0,064 A/см 2 . Зарегистрировано нейтронное излучение интенсивностью 4×10 4 нейтрон/с, в 3 раза превышающее фон. Установлено наличие в гамма-спектре максимума в области энергий 2,2 МэВ, при этом скорость счета гамма-квантов составила 2,1×10 4 с -1 . Обнаружено присутствие трития со скоростью образования 2×10 4 атом/c. В процессе электролиза зарегистрировано четырехкратное превышение выделенной энергии над суммарной затраченной (электрической и химической) энергией. Оно достигало 4 МДж/см 3 катода за 120 ч эксперимента. В случае объемного Pd-катода 1*1*1 см наблюдали его частичное расплавление (Т пл =1554°С). На основании опытных данных о ядрах трития и гамма-квантах вероятность реакции синтеза найдена авторами равной 10 -19 с -1 на DD-пару. Вместе с тем авторы отмечают, что если основной причиной повышенного выхода энергии считать ядерные реакции с участием дейтронов, то выход нейтронов был бы существенно выше (на 11−14 порядков). По оценке авторов, в случае электролиза раствора D 2 O+DTO+Т 2 O тепловыделение может увеличиться до 10 кВт/см 3 катода».

Несколько слов о научной этике, нарушение которой ставят в вину Флейшману и Понсу. Как явствует из оригинала статьи, она была получена редакцией журнала 13 марта 1989 года, принята к публикации 22 марта 1989 года и опубликована 10 апреля 1989 года. То есть конференция 23 марта 1989 года проводилась по факту принятия этой статьи к публикации. И где здесь нарушение этики, а главное кем?

Из этого описания чётко и недвусмысленно явствует, что получено неимоверно огромное количество избыточного тепла, в несколько раз превышающее энергию, затраченную на электролиз, и возможную химическую энергию, которая может выделиться при простом химическом разложении воды на отдельные атомы. Зарегистрированные при этом тритий и нейтроны однозначно говорят о процессе ядерного синтеза. Причем нейтроны зарегистрированы двумя независимыми способами и различными приборами.

В 1990 году в этом же журнале была опубликована следующая статья Fleischmann, M., et al., Calorimetry of the palladium-deuterium-heavy water system. J. Electroanal. Chem., 1990, 287, p. 293, конкретно касающаяся тепловыделения при этих исследованиях, из которой по рисунку 8А видно, что интенсивное выделение тепла, а значит и сам эффект, начинается только на 66-е сутки (~5,65´10 6 сек) непрерывной работы электролитической ячейки и продолжается в течение пяти суток. То есть, чтобы получить результат и зафиксировать его, необходимо потратить семьдесят одни сутки на проведение измерений, не считая времени на подготовку и изготовление экспериментальной установки. У нас, например, на изготовление первой установки, запуск ее и проведение различных калибровок ушёл весь апрель, и только в середине мая 1989 года мы получили первые результаты.

Начало процесса выделения тепла при электролизе с большим запаздыванием впоследствии было подтверждено D. Gozzi, F. Cellucci, P.L. Cignini, G. Gigli, M. Tomellini, E. Cisbani, S. Frullani, G.M. Urciuoli, J. Electroanalyt. Chem. 452, p. 254, (1998). Начало заметного выделения избыточного тепла здесь зарегистрировано по истечении 210 часов, что соответствует 8,75 суток.

А так же Michael C. H. McKubre директором Энергетического Исследовательского Центра Стендфордского Исследовательского Института, США (Energy Research Center SRI International, Menlo Park, California, USA), представившего свои результаты на 10-й Международной конференции по холодному синтезу (ICCF-10) 25 августа 2003 года. Начало выделения избыточного тепла у него — 520 часов, что соответствует 21,67 суток.

В своей работе в 1996 году, доложенной на 6-ой Международной конференции по холодному синтезу (ICCF-6) T. Roulette, J. Roulette, and S.Pons. Results of ICARUS 9 Experiments Runat IMRA Europe. IMRA Europe, S.A., Centre Scientifique Sophia Antipolis, 06560 Valbonne, FRANCE, Стенли Понс продемонстрировал две вещи. Первое и, пожалуй, самое главное — это то, что, переехав из Соединенных Штатов в 1992 году на юг Франции, на новом месте по прошествии значительного периода времени, в другой стране, он сумел не только воспроизвести эксперимент в Солт-Лейк-Сити, проведенный в 1989 году, но и получить увеличение результатов по теплу! О какой такой невоспроизводимости здесь может идти речь? Смотрите:

Второе, по этим данным заметное выделение тепла начинается на 71-й день электролиза! Продолжается изменение выделения тепла 40 с лишним дней и далее постоянно на уровне 310 МДж до 160 дней!

Поэтому, как можно говорить через месяц с небольшим о невоспроизводимости экспериментов М. Флейшмана и С. Понса в одной-единственной лаборатории, которая проводила проверку даже не по научной статье и без привлечения и консультации с авторами? Явно видны корыстные мотивы и страх за возможность ответственности за безрезультатные опыты с термоядерным синтезом. Этим заявлением в мае 1989 года Американское физическое общество (АФО), получается, поставило себя в нелицеприятное положение, заменив науку обыкновенным бизнесом, и на много лет закрыло официальные исследования в области холодного ядерного синтеза. Члены этого общества, во-первых, повели себя наперекор всякой научной этике в смысле опровержения результатов научной работы с публикацией в научном журнале, а доверили это газете New York Times, где в мае 1989 года появилась разгромная статья в отношении М. Флейшмана и С. Понса. Хотя нарушение этой этики они и предъявляли М. Флейшману и С. Понсу в плане озвучивания результатов их научных исследований на пресс-конференции до публикации научной статьи в научном журнале.

Не существует ни одной научной статьи в рецензируемых журналах, которая научно обосновывает невозможность холодного ядерного синтеза.

Такого нет. Есть только интервью и высказывания в СМИ ученых, которые холодным ядерным синтезом никогда не занимались, а занимались такими фундаментальными и капиталоёмкими направлениями физики, как термоядерный синтез, физика звезд, теория Большого взрыва, возникновение Вселенной, Большой адронный коллайдер.

Ещё в институте на курсе лекций «Измерение физических параметров» нас учили, что поверку приборов для измерения физических величин обязательно надо проводить прибором, имеющим класс точности выше, чем поверяемый прибор. К проверке явлений это же правило имеет точно такое же отношение! Поэтому проверки по теплу в MIT и Caltech, на которые любят ссылаться по вопросу состоятельности холодного синтеза, на самом деле никакими проверками не являются. Сравните точности и погрешности при измерении температуры и мощности с экспериментальными данными Флейшмана и Понса, которые приводит в своём докладе Мэлвин Майлз (Melvin H.Miles. The Fleischmann-Pons Calorimetric Methods And Equations. Satellite Symposium of the 20th International Conference on Condensed Matter Nuclear Science SS ICCF 20 Xiamen, China September 28−30, 2016).

Они отличаются в десятки и тысячу раз!

Теперь относительно утверждения, что «если основной причиной повышенного выхода энергии считать ядерные реакции с участием дейтронов, то выход нейтронов был бы существенно выше (на 11−14 порядков)». Здесь расчёт простой: при выделении 4 МДж избыточного тепла на см 3 катода должно образоваться минимум 4,29·10 18 нейтронов. Если хотя бы один нейтрон покинет зону реакции и не отдаст свою энергию внутри ячейки с 2,45 МэВ до комнатной, то уже никак не зарегистрировать столько избыточного тепла. А если при этом регистрируются вылетевшие нейтроны, то количество реакций синтеза, происходящих при этом, должно быть гораздо больше, чем минимум нейтронов, и будет больше образовываться трития. Плюс к этому, зная, что сечение взаимодействия нейтронов и гелия-3 несоизмеримо превосходит сечения других возможных реакций продуктов реакций d+d синтеза (примерно на два порядка)

то становится ясно, что никто не облучится нейтронами, и понятно появление такого соотношения количества зарегистрированного трития к количеству зарегистрированных нейтронов и откуда впоследствии берётся гелий-4. Он появляется как результат каскада реакций синтеза продуктов d+d-реакций, но это уже стало ясно из экспериментов других исследователей про гелий-4. У Флейшмана и Понса об этом нет ни слова.

Лукавят «эксперты» и с облучением нейтронами. При таких количествах выделившегося избыточного тепла они все должны превратиться в тепловые, передать свою энергию материалам и воде электролита в ячейке, а не уносить из зоны реакции 75% энергии за пределы реактора и облучать экспериментаторов. Поэтому М. Флейшман и С. Понс регистрировали только малую часть нейтронов — тяжёлая вода, как известно, хороший замедлитель нейтронов.

С научной точки зрения в этой статье имеется только одна ошибка — это приведение количества выделившейся избыточной энергии к объёму используемого палладиевого электрода. В этом случае расходуемым компонентом и источником энергии является дейтерий, и было бы логично отнести выделившееся избыточное количество энергии к количеству поглощенного палладием дейтерия и сравнить с предполагаемым теплом при ядерном синтезе в результате d+d-реакции, но, как сказано выше, энергетический баланс этого процесса не должен ограничиваться продуктами этих реакций.

Завораживающе звучат из уст физиков-термоядерщиков магические термины: кулоновский барьер, термоядерный синтез, плазма. Но хочется спросить у них: какое отношение температура выше 1000 °C и четвёртое агрегатное состояние вещества — плазма имеют к процессу электролиза Мартина Флейшмана и Стэнли Понса? Плазма — это ионизированный газ. Ионизация водорода начинается с 3 000 градусов Кельвина, и к 10 000 градусов Кельвина водород полностью ионизирован, то есть это примерно 2727 °C — начало ионизации, а к 9727 °C — полностью ионизированный водород — плазма. Вопрос: как можно применять описание четвёртого агрегатного состояния вещества к обыкновенному газу? Это все равно, что сравнивать тёплое и прозрачное. Можно, конечно, попробовать измерить расстояние до Луны посредством определения количества выпавшей росы в пустыне Сахара, но какой будет результат? Точно так же результаты холодного ядерного синтеза невозможно описывать с точки зрения термоядерного синтеза. Таким способом можно добиться только отрицания возможности самого холодного ядерного синтеза и укрепить сомнения в возможности реализации реакций ядерного синтеза при таких термодинамических параметрах. Но ядерная физика ни слова не говорит о нулевой вероятности протекания таких реакций при температурах, близких к комнатным. А это означает лишь то, что эти вероятности начинают расти при повышении температуры до 1000 °C.

Возникает логичный вопрос: cui prodest — кому это выгодно? Конечно же, тому, кто первым начинает кричать: «Держи вора!» Я не хочу ни на кого показывать пальцем, но первыми закричали: «Этого не может быть!» — физики, занимающиеся термоядерным синтезом, которые тут же сочинили сказочки и страшилки про плазму, нейтроны и про то, как это все непостижимо для простого ума. Именно они, потратив очередные пару десятков лет и нескольких десятков миллиардов долларов, в очередной раз, подобно Ахиллесу, догоняющему черепаху, опять окажутся в одном шаге от осуществления вековой мечты человечества о получении нескончаемой, «бесплатной» и «чистой» энергии.

Самая большая ошибка холодного ядерного синтеза, которую нам «подсунули» термоядерщики, — это невозможность преодоления Кулоновского барьера одинаково заряженными ядрами водорода при низких температурах. Однако должен разочаровать их и «теоретиков», прибежавших в холодный ядерный синтез со своими «астролябиями» и пытающихся придумать для преодоления этого барьера что-то экзотическое типа гидрино, динейтрино-динейтрония и т.п. Для объяснения регистрируемых продуктов холодного ядерного синтеза вполне достаточно физических законов и явлений из институтского курса физики.

Надо понимать, что холодный ядерный синтез — это естественный природный процесс, который создал, синтезировал весь окружающий нас мир, и этот процесс происходит и в недрах Солнца, и внутри Земли. По-другому быть не может. И все мы будем абсолютными идиотами, если не сумеем воспользоваться этим открытием двух электрохимиков!

Холодный синтез не лженаука. Ярлык лженаучности придуман для защиты зашедших в тупик и боящихся ответственности «термоядерщиков» и «больших коллайдерщиков», превративших современную физику в доходный бизнес для узкого круга лиц, и которые только называют себя учёными.

Открытие М. Флейшмана и С. Понса подложило «большую свинью» физикам, комфортно расположившимся на передовых рубежах науки. Физический «авангард человечества» не в первый раз лихо проскочил мимо небольшой области исследований, не заметив открывавшихся возможностей реализации реакций ядерного синтеза при низких энергиях и низких финансовых затратах, и теперь находится в большой растерянности.

Сколько нужно ещё времени, чтобы признать очевидный факт, что термоядерный синтез — тупик, а Солнце — не термоядерный реактор? Миллиардами долларов не заткнуть пробоину тонущего термоядерного «Титаника», в то время как для широкомасштабных исследований холодного ядерного синтеза и создания работающих энергетических установок, способных решить основные глобальные проблемы человечества, потребуется лишь малая толика термоядерного бюджета! Итак, да здравствует холодный синтез!

  • Перевод

Эта область называется теперь низкоэнергетическими ядерными реакциями, и в ней могут быть достигнуты настоящие результаты – или же она может оказаться упрямой мусорной наукой

Доктор Мартин Флейшман (справа), электрохимик, и Стэнли Понс, председатель химического отдела Университета Юты, отвечают на вопросы комитета по науке и технологиям по поводу их спорной работы в области холодного синтеза, 26 апреля 1989 года.

Говард Дж. Уилк – химик, специалист по синтетической органике, уже долгое время не работает по специальности и живёт в Филадельфии. Как и многие другие исследователи, работавшие в фармацевтической области, он стал жертвой сокращения НИОКР в лекарственной индустрии, происходящего в последние годы, и сейчас занимается подработками, не связанными с наукой. Обладая свободным временем, Уилк отслеживает прогресс компании из Нью-Джерси, Brilliant Light Power (BLP).

Это одна из тех компаний, что разрабатывают процессы, которые можно в общем обозначить как новые технологии добычи энергии. Это движение, по большей части, является воскрешением холодного синтеза – недолго существовавшего в 1980-х явления, связанного с получением ядерного синтеза в простом настольном электролитическом устройстве, которое учёные быстро отмели.

В 1991 году основатель BLP, Рэнделл Л. Миллс , объявил на пресс-конференции в Ланкастере (Пенсильвания) о разработке теории, по которой электрон в водороде может переходить из обычного, основного энергетического состояния, в ранее неизвестные, более устойчивые состояния с более низкой энергией, с высвобождением огромного количества энергии. Миллс назвал этот странный новый тип сжавшегося водорода, " " , и с тех пор работает над разработкой коммерческого устройства, собирающего эту энергию.

Уилк изучил теорию Миллса, прочёл работы и патенты, и провёл свои собственные вычисления для гидрино. Уилк даже посетил демонстрацию на территории BLP в Крэнбюри, Нью-Джерси, где обсудил гидрино с Миллсом. После этого Уилк всё ещё не может решить, является ли Миллс нереальным гением, бредящим учёным, или чем-то средним.

История началась в 1989 году, когда электрохимики Мартин Флейшман и Стэнли Понс сделали удивительное заявление на пресс-конференции Университета Юты о том, что они приручили энергию ядерного синтеза в электролитической ячейке.

Когда исследователи подавали электрический ток на ячейку, по их мнению, атомы дейтерия из тяжёлой воды, проникшие в палладиевый катод, вступали в реакцию синтеза и порождали атомы гелия. Избыточная энергия процесса превращалась в тепло. Флейшман и Понс утверждали, что этот процесс не может быть результатом ни одной известной химической реакции, и присовокупили к нему термин «холодный синтез».

После многих месяцев расследования их загадочных наблюдений, однако, научное сообщество пришло к соглашению о том, что эффект был нестабильным, или вообще отсутствовал, и что в эксперименте были допущены ошибки. Исследование забраковали, а холодный синтез стал синонимом мусорной науки.

Холодный синтез и производство гидрино – это святой Грааль для добычи бесконечной, дешёвой и экологически чистой энергии. Учёных холодный синтез разочаровал. Они хотели в него поверить, но их коллективный разум решил, что это было ошибкой. Частью проблемы было отсутствие общепринятой теории для объяснения предложенного явления – как говорят физики, нельзя верить эксперименту, пока он не подтверждён теорией.

У Миллса есть своя теория, но многие учёные не верят ей и считают гидрино маловероятным. Сообщество отвергло холодный синтез и игнорировало Миллса и его работу. Миллс поступал так же, стараясь не попадать в тень холодного синтеза.

А в это время область холодного синтеза поменяла имя на низкоэнергетические ядерные реакции (НЭЯР) , и существует дальше. Некоторые учёные продолжают попытки объяснить эффект Флейшмана-Понса. Другие отвергли ядерный синтез, но исследуют другие возможные процессы, способные объяснить избыточное тепло. Как и Миллс, их привлекли потенциальные возможности коммерческого применения. В основном их интересует добыча энергии для индустриальных нужд, домашних хозяйств и транспорта.

У небольшого числа компаний, созданных в попытках вывести новые энергетические технологии на рынок, бизнес-модели похожи на модели любого технологического стартапа: определить новую технологию, попытаться запатентовать идею, вызвать интерес инвесторов, получить финансирование, построить прототипы, провести демонстрацию, объявить даты поступления рабочих устройств в продажу. Но в новом энергетическом мире нарушение сроков – это норма. Никто пока ещё не совершил последнего шага с демонстрацией рабочего устройства.

Новая теория

Миллс вырос на ферме в Пенсильвании, получил диплом химика в колледже Франклина и Маршала, учёную степень по медицине в Гарвардском университете, и изучал электротехнику в Массачусетском технологическом институте. Будучи студентом, он начал разрабатывать теорию, которую он назвал "Большой объединённой теорией классической физики ", которая, по его словам, основана на классической физике и предлагает новую модель атомов и молекул, отходящую от основ квантовой физики.

Принято считать, что единственный электрон водорода шныряет вокруг его ядра, находясь на наиболее приемлемой орбите основного состояния. Просто невозможно придвинуть электрон водорода ближе к ядру. Но Миллс утверждает, что это возможно.

Сейчас он работает исследователем в Airbus Defence & Space, и говорит, что не отслеживал деятельность Миллса с 2007 года, поскольку в экспериментах не наблюдалось однозначных признаков избыточной энергии. «Сомневаюсь, что какие-либо более поздние эксперименты прошли научный отбор», сказал Ратке.

«Думаю, что в целом признано, что теория доктора Миллса, выдвинутая им в качестве основы его заявлений, противоречива и не способна выдавать предсказания,- продолжает Ратке. – Можно было бы спросить, "Могли ли мы так удачно наткнуться на источник энергии, который просто работает, следуя неверному теоретическому подходу?" ».

В 1990-х несколько исследователей, включая команду из Исследовательского центра Льюиса, независимо друг от друга сообщили о воспроизведении подхода Миллса и получении избыточного тепла. Команда НАСА в отчёте написала, что «результаты далеки от убедительных», и ничего не говорила про гидрино.

Исследователи предлагали возможные электрохимические процессы для объяснения тепла, включая неравномерность электрохимической ячейки, неизвестные экзотермические химические реакции, рекомбинацию разделённых атомов водорода и кислорода в воде. Те же аргументы приводили и критики экспериментов Флейшмана-Понса. Но команда из НАСА уточнила, что исследователи не должны отбрасывать это явление, просто на случай, если Миллс на что-то наткнулся.

Миллс очень быстро говорит, и способен вечно рассказывать о технических деталях. Кроме предсказания гидрино, Миллс утверждает, что его теория может идеально предсказать местоположение любого электрона в молекуле, используя специальный софт для моделирования молекул, и даже в таких сложных молекулах, как ДНК. С использованием стандартной квантовой теории учёным тяжело предсказать точное поведение чего-либо более сложного, чем атом водорода. Также Миллс утверждает, что его теория объясняет явление расширения Вселенной с ускорением, которое космологи ещё не до конца раскусили.

Кроме того, Миллс говорит, что гидрино появляются при сжигании водорода в звёздах, таких, как наше Солнце, и что их можно обнаружить в спектре звёздного света. Водород считается самым распространённым элементом во вселенной, но Миллс утверждает, что гидрино – это и есть тёмная материя, которую не могут найти во Вселенной. Астрофизики с удивлением воспринимают такие предположения: «Я никогда не слышал о гидрино», говорит Эдвард Колб [Edward W. (Rocky) Kolb ] из Чикагского университета, эксперт по тёмной вселенной .

Миллс сообщил об успешной изоляции и описании гидрино при помощи стандартных спектроскопических методов, таких, как инфракрасный, рамановский, и спектроскопия ядерно-магнитного резонанса. Кроме того, по его словам, гидрино могут вступать в реакции, приводящие к появлению новых типов материалов с «удивительными свойствами». Сюда входят проводники, которые, по словам Миллса, произведут революцию в мире электронных устройств и аккумуляторов.

И хотя его заявления противоречат общественному мнению, идеи Миллса кажутся не такими экзотическими по сравнению с другими необычными компонентами Вселенной. К примеру, мюоний – известная короткоживущая экзотическая сущность, состоящая из антимюона (положительно заряженной частицы, похожей на электрон) и электрона. Химически мюоний ведёт себя как изотоп водорода, но при этом в девять раз его легче.

SunCell, гидриновая топливная ячейка

Вне зависимости от того, в каком месте шкалы правдоподобности располагаются гидрино, Миллс уже десять лет назад рассказывал, что BLP уже продвинулась за пределы научного подтверждения, и её интересует лишь коммерческая сторона вопроса. С годами BLP собрала более $110 млн инвестиций.

Подход BLP к созданию гидрино проявлялся по-разному. В ранних прототипах Миллс с командой использовали вольфрам или никелевые электроды с электролитическим раствором лития или калия. Подводимый ток расщеплял воду на водород и кислород, и при нужных условиях литий или калий играли роль катализатора для поглощения энергии и коллапса электронной орбиты водорода. Энергия, возникающая при переходе из основного атомного состояния в состояние с более низкой энергией, выделялась в виде яркой высокотемпературной плазмы. Связанное с ней тепло затем использовалось для создания пара и питания электрогенератора.

Сейчас в BLP тестируют устройство SunCell , в котором водород (из воды) и оксид-катализатор подаются в сферический углеродный реактор с двумя потоками расплавленного серебра. Электрический ток, подаваемый на серебро, запускает плазменную реакцию с формированием гидрино. Энергия реактора улавливается углеродом, работающим в качестве «радиатора чёрного тела». Когда он раскаляется до тысяч градусов, то испускает энергию в виде видимого света, улавливаемого фотовольтаическими ячейками, преобразующими свет в электричество.

Касательно коммерческих разработок Миллс иногда выглядит, как параноик, а иногда – как практичный бизнесмен. Он зарегистрировал торговую марку «Hydrino». И поскольку его патенты заявляют об изобретении гидрино, BLP заявляют об интеллектуальной собственности на исследования гидрино. В связи с этим BLP запрещает другим экспериментаторам проводить даже базовые исследования гидрино, которые могут подтвердить или опровергнуть их существование, без предварительного подписания соглашения об интеллектуальной собственности. «Мы приглашаем исследователей, мы хотим, чтобы другие занимались этим,- говорит Миллс. – Но нам необходимо защищать нашу технологию».

Вместо этого Миллс назначил уполномоченных валидаторов, утверждающих, что могут подтвердить работоспособность изобретений BLP. Один из них – электротехник из Бакнеллского университета, профессор Питер М. Дженсон [Peter M. Jansson ], которому платят за оценку технологии BLP через его консалтинговую компанию Integrated Systems. Дженсон утверждает, что компенсация его времени «никаким образом не влияет на мои выводы как независимого исследователя научных открытий». Он добавляет, что «опроверг большую часть открытий», которые он изучал.

«Учёные из BLP занимаются настоящей наукой, и пока я не нашёл никаких ошибок в их методах и подходах,- говорит Дженсон. – С годами я видел много устройств в BLP, явно способных производить избыточную энергию в осмысленных количествах. Думаю, что научной общественности понадобится некоторое время для того, чтобы принять и переварить возможность существования низкоэнергетических состояний водорода. По моему мнению, работа доктора Миллса неоспорима». Дженсон добавляет, что BLP сталкивается со сложностями в коммерческом применении технологии, но препятствия носят деловой, а не научный характер.

А пока BLP провела несколько демонстраций своих новых прототипов для инвесторов с 2014 года, и опубликовала видеоролики на своём сайте. Но эти события не дают чётких доказательств того, что SunCell действительно работает.

В июле, после одной из демонстраций, компания объявила, что оценочная стоимость энергии из SunCell настолько мала – от 1% до 10% любой другой известной формы энергии – что компания «собирается предоставить автономные индивидуальные источники питания практически для всех стационарных и мобильных приложений, не привязанных к энергосети или топливным источникам энергии». Иначе говоря, компания планирует построить и выдавать в лизинг SunCells или другие устройства потребителям, взимая ежедневную плату, и позволяя им отвязываться от энергосетей и перестать покупать бензин или соляру, при этом расходуя в разы меньше денег.

«Это конец эры огня, двигателя внутреннего сгорания и централизованных систем подачи энергии,- говорит Миллс. – Наша технология сделает все остальные виды энергетических технологий устаревшими. Проблемы изменения климата будут решены». Он добавляет, что, судя по всему, BLP может начать выпуск продукции, для начала станций мощностью в МВт, к концу 2017 года.

Что в имени?

Несмотря на неопределённость, окружающую Миллса и BLP, их история – лишь часть общей саги о новой энергии. Когда после первоначального заявления Флейшмана-Понса улеглась пыль, два исследователя занялись изучением того, что правильно, а что нет. К ним присоединились десятки соавторов и независимых исследователей.

Многие из этих учёных и инженеров, часто работавших на собственные средства, интересовались не столько коммерческими возможностями, сколько наукой: электрохимией, металлургией, калориметрией, масс-спектрометрией, и ядерной диагностикой. Они продолжали ставить эксперименты, выдававшие избыточное тепло, определяемое как количество энергии, выдаваемое системой, по отношению к энергии, необходимой для её работы. В некоторых случаях сообщалось о ядерных аномалиях, таких, как появлении нейтрино, α-частиц (ядер гелия), изотопах атомов и трансмутациях одних элементов в другие.

Но в конечном итоге большинство исследователей ищут объяснение происходящему, и были бы счастливы, даже если бы скромное количество тепла оказалось бы полезным.

«НЭЯР находятся в экспериментальной фазе, и теоретически пока не поняты», говорит Дэвид Нагель [David J. Nagel ], профессор по электротехнике и информатике в Университете им. Джорджа Вашингтона, и бывший менеджер по исследованиям в Исследовательской лаборатории морфлота. «Некоторые результаты просто необъяснимы. Назовите это холодным синтезом, низкоэнергетическими ядерными реакциями, или как-то ещё – имён достаточно – мы всё равно ничего не знаем об этом. Но нет сомнений, что ядерные реакции можно запускать при помощи химической энергии».

Нагель предпочитает называть явление НЭЯР «решёточными ядерными реакциями», поскольку явление происходит в кристаллических решётках электрода. Изначальное ответвление этой области концентрируется на внедрении дейтерия в палладиевый электрод при помощи подачи большой энергии, поясняет Нагель. Исследователи сообщали, что такие электрохимические системы могут выдавать вплоть до 25 раз больше энергии, чем потребляют.

Другое основное ответвление области использует сочетания никеля и водорода, которое выдаёт до 400 раз больше энергии, чем потребляет. Нагель любит сравнивать эти НЭЯР-технологии с экспериментальным международным термоядерным реактором , основанным на хорошо известной физике – слиянии дейтерия и трития – который строят на юге Франции. Стоимость этого 20-летнего проекта составляет $20 млрд, и его цель в производстве энергии, превышающей потребляемую в 10 раз.

Нагель говорит, что область НЭЯР повсеместно растёт, и главные препятствия – это недостаток финансирования и нестабильные результаты. К примеру, некоторые исследователи сообщают, что для запуска реакции необходимо достичь некоего порогового значения. Она может потребовать минимального количества дейтерия или водорода для запуска, или же электроды необходимо подготовить, придав им кристаллографическую ориентацию и поверхностную морфологию. Последнее требование – обычное для гетерогенных катализаторов, используемых при очистке бензина и на нефтехимических производствах.

Нагель признаёт, что у коммерческой стороны НЭЯР тоже есть проблемы. Разрабатываемые прототипы, по его словам, «довольно грубые», и пока ещё не появилось компании, продемонстрировавшей работающий прототип или заработавшей на этом деньги.

E-Cat от Росси

Одна из ярких попыток поставить НЭЯР на коммерческие рельсы была сделана инженером из компании Leonardo Corp , находящейся в Майами. В 2011 году Росси с коллегами объявили на пресс-конференции в Италии о постройке настольного реактора «Энергетический катализатор» , или E-Cat, производящего избыточную энергию в процессе, где катализатором служит никель. Для обоснования изобретения Росси демонстрировал E-Cat потенциальным инвесторам и СМИ, и назначал независимые проверки .

Росси утверждает, что в его E-Cat происходит самоподдерживающийся процесс, в котором входящий электрический ток запускает синтез водорода и лития в присутствии порошковой смеси никеля, лития и алюмогидрида лития, в результате которого появляется изотоп бериллия. Короткоживущий бериллий распадается на две α-частицы, а избыточная энергия выделяется в виде тепла. Часть никеля превращается в медь. Росси говорит об отсутствии как отходов так и излучения вне аппарата.

Анонс Росси вызвал у учёных то же неприятное чувство, что и холодный синтез. Росси вызывает у многих людей недоверие из-за своего спорного прошлого. В Италии его обвинили в мошенничестве из-за его предыдущих деловых махинаций. Росси говорит, что эти обвинения остались в прошлом и не хочет обсуждать их. Также у него однажды был контракт на создание тепловых установок для ВС США, но поставленные им устройства не работали по спецификациям.

В 2012 году Росси объявил о создании системы мощностью в 1 МВт, пригодной для отопления больших зданий. Также он предполагал, что к 2013 году у него уже будет фабрика, ежегодно производящая миллион установок мощностью в 10 кВт и размером с ноутбук, предназначенных для домашнего использования. Но ни фабрики, ни этих устройств так и не случилось.

В 2014 году Росси продал технологию по лицензии компании Industrial Heat, открытой инвестиционной конторой Cherokee , занимающейся покупкой недвижимости и очищающей старые промзоны для новой застройки. В 2015 году генеральный директор Cherokee, Том Дарден , по образованию юрист и специалист по окружающей среде, назвал Industrial Heat «источником финансирования для изобретателей НЭЯР».

Дарден говорит, что Cherokee запустила Industrial Heat, поскольку в инвестиционной компании верят, что технология НЭЯР достойна исследований. «Мы были готовы ошибаться, мы готовы были вложить время и ресурсы, чтобы узнать, может ли эта область оказаться полезной в нашей миссии по предотвращению загрязнения [окружающей среды]», говорит он.

А в это время Industrial Heat и Leonardo поругались, и теперь судятся друг с другом по поводу нарушений соглашения. Росси получил бы $100 млн, если бы годовой тест его системы мощностью в 1 МВт оказался успешным. Росси говорит, что тест закончен, но в Industrial Heat так не считают, и опасаются, что устройство не работает.

Нагель говорит, что E-Cat привнёс в область НЭЯР энтузиазм и надежду. В 2012 году он утверждал, что, по его мнению, Росси не был мошенником, «но мне не нравятся некоторые его подходы к тестированию». Нагель считал, что Росси должен был действовать более аккуратно и прозрачно. Но в то время Нагель сам считал, что устройства на принципе НЭЯР появятся в продаже к 2013 году.

Росси продолжает исследования и объявил о разработках других прототипов. Но он мало что рассказывает о своей работе. Он говорит, что устройства мощностью в 1 МВт уже находятся в производстве, и он получил «необходимые сертификаты» для их продажи. Домашние устройства, по его словам, пока ещё ожидают сертификации.

Нагель говорит, что после спада радостного настроения, связанного с объявлениями Росси, к НЭЯР вернулся статус-кво. Доступность коммерческих генераторов НЭЯР отодвинулась на несколько лет. И даже если устройство выдержит проблемы воспроизводимости и будет полезным, его разработчикам предстоит жестокая битва с регуляторами и принятием его пользователями.

Но он сохраняет оптимизм. «НЭЯР могут стать коммерчески доступными ещё до их полного понимания, как было с рентгеном», говорит он. Он уже оборудовал лабораторию в Университете им. Джорджа Вашингтона для новых экспериментов с никелем и водородом.

Научные наследия

Многие исследователи, продолжающие работать над НЭЯР – это уже состоявшиеся учёные на пенсии. Для них это непросто, поскольку годами их работы возвращали непросмотренными из мейнстримовых журналов, а их предложения о докладах на научных конференциях не принимали. Они всё сильнее волнуются по поводу статуса этой области исследований, поскольку их время истекает. Им хочется либо зафиксировать своё наследие в научной истории НЭЯР, либо хотя бы успокоиться тем, что их инстинкты их не подвели.

«Очень неудачно вышло, когда холодный синтез впервые был опубликован в 1989 году как новый источник энергии синтеза, а не просто как некая новая научная диковина», говорит электрохимик Мелвин Майлс . «Возможно, исследования могли бы идти как обычно, с более аккуратным и точным изучением».

Бывший исследователь в Центре воздушно-морских исследований на базе Чайна Лейк, Майлс иногда работал с Флейшманом, умершим в 2012 году. Майлс считает, что Флейшман и Понс были правы. Но и сегодня он не знает, как можно сделать коммерческий источник энергии для системы из палладия и дейтерия, несмотря на множество экспериментов, в ходе которых было получено избыточное тепло, коррелирующее с получением гелия.

«Зачем кто-то будет продолжать исследования или интересоваться темой, которую 27 лет назад объявили ошибкой? – спрашивает Майлс. – Я убеждён, что холодный синтез когда-нибудь признают ещё одним важным открытием, которое долго принимали, и появится теоретическая платформа, объясняющая результаты экспериментов».

Ядерный физик Людвик Ковальский, почётный профессор из Монтклэрского государственного университета соглашается, что холодный синтез стал жертвой неудачного старта. «Я достаточно стар, чтобы помнить эффект, произведённый первым объявлением на научное сообщество и на общественность», говорит Ковальский. Временами он сотрудничал с исследователями НЭЯР, «но мои три попытки подтвердить сенсационные заявления были неудачными».

Ковальский считает, что первый позор, заработанный исследованием, вылился в бОльшую проблему, неподобающую для научного метода . Справедливы или нет исследователи НЭЯР, Ковальский всё ещё считает, что стоит докопаться до чёткого вердикта «да» или «нет». Но его не найти до тех пор, пока исследователей холодного синтеза считают «эксцентричными псевдоучёными», говорит Ковальский. «Прогресс невозможен, и никто не выигрывает от того, что результаты честных исследований не публикуются, и никто не проверяет их независимо в других лабораториях».

Время покажет

Даже если Ковальский получит однозначный ответ на свой вопрос и заявления исследователей НЭЯР подтвердятся, дорога к коммерциализации технологии будет полна препятствий. Многие стартапы, даже с надёжной технологией, проваливаются по причинам, не связанным с наукой: капитализация, движение ликвидности, стоимость, производство, страховка, неконкурентноспособные цены, и т.п.

Возьмём, к примеру, Sun Catalytix. Компания вышла из MIT при поддержке твёрдой науки, но пала жертвой коммерческих атак до того, как вышла на рынок. Она была создана для коммерциализации искусственного фотосинтеза, разработанного химиком Дэниелом Носерой [Daniel G. Nocera ], работающим ныне в Гарварде, для эффективного преобразования воды в водородное топливо при помощи солнечного света и недорогого катализатора.

Носера мечтал , что полученный таким образом водород сможет питать простые топливные ячейки и давать энергию домам и деревням в отсталых регионах мира, не имеющих доступа к энергосетям, и давая им возможность наслаждаться современными удобствами, улучшающими уровень жизни. Но на разработку потребовалось гораздо больше денег и времени, чем казалось сначала. Через четыре года Sun Catalytix бросила попытки коммерциализации технологии, занялась изготовлением потоковых батарей , и потом в 2014 году её купила Lockheed Martin.

Неизвестно, тормозят ли развитие компаний, занимающихся НЭЯР, такие же препятствия. К примеру, Уилк, органический химик, следивший за прогрессом Миллса, озабочен желанием понять, основаны ли попытки коммерциализации BLP на чем-то реальном. Ему просто нужно знать, существует ли гидрино.

В 2014 Уилк спросил Миллса, изолировал ли тот гидрино, и хотя Миллс уже писал в работах и патентах, что ему это удалось, он ответил, что такого ещё не было, и что это было бы «очень большой задачей». Но Уилку кажется иное. Если процесс создаёт литры гидринного газа, это должно быть очевидным. «Покажите нам гидрино!», требует Уилк.

Уилк говорит, что мир Миллса, и вместе с ним мир других людей, занимающихся НЭЯР, напоминает ему один из парадоксов Зенона, который говорит об иллюзорности движения. «Каждый год они преодолевают половину расстояния до коммерциализации, но доберутся ли они до неё когда-нибудь?». Уилк придумал четыре объяснения для BLP: расчёты Миллса верны; это мошенничество; это плохая наука; это патологическая наука, как называл её нобелевский лауреат по физике Ирвинг Ленгмюр.

Ленгмюр изобрёл этот термин более 50 лет назад для описания психологического процесса, в котором учёный подсознательно отдаляется от научного метода и так погружается в своё занятие, что вырабатывает невозможность объективно смотреть на вещи и видеть, что реально, а что нет. Патологическая наука – это «наука о вещах, не таких, какими они кажутся», говорил Ленгмюр. В некоторых случаях она развивается в таких областях, как холодный синтез/НЭЯР, и никак не сдаётся, несмотря на то, что признаётся ложной большинством учёных.

«Надеюсь, что они правы», говорит Уилк про Миллса и BLP. «В самом деле. Я не хочу их опровергать, я просто ищу истину». Но если бы «свиньи умели летать», как говорит Уилкс, он бы принял их данные, теорию и другие предсказания, следующие из неё. Но он никогда не был верующим. «Думаю, если бы гидрино существовали, их бы обнаружили в других лабораториях или в природе много лет назад».

Все обсуждения холодного синтеза и НЭЯР заканчиваются именно так: они всегда приходят к тому, что никто не выпустил на рынок работающего устройства, и ни один из прототипов в ближайшем будущем нельзя будет поставить на коммерческие рельсы. Так что время будет последним судьёй.

Теги:

  • холодный синтез
  • нэяр
  • низкоэнергетические ядерные реакции
  • suncell
  • росси
  • e-cat
Добавить метки
Включайся в дискуссию
Читайте также
Модальные глаголы: Can vs
Спряжение глагола Они выспятся какое спряжение
Электронный архив президента рф Архив президента российской федерации