Подпишись и читай
самые интересные
статьи первым!

Пи постоянная величина. Это волшебное число пи

В числе ПИ очень много загадок. Вернее это даже не загадки, а своего рода какая-то Истина, которую за всю историю человечества никто еще не разгадал…

Что такое число Пи? Число ПИ - математическая «константа», выражающая отношение длины окружности к её диаметру. Сначала по невежеству его (это отношение) считали равным трем, что было грубо приближенно, но им хватало. Но когда времена доисторические сменились временами древними (т.е. уже историческими), то удивлению пытливых умов не было предела: оказалось, что число три весьма неточно выражает это соотношение. С течением времени и развитием наук это число стали полагать равным двадцати двум седьмым.

Английский математик Август де Морган назвал как-то число ПИ “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Неутомимые ученые продолжали и продолжали вычислять десятичные знаки числа Пи, что является на самом деле дико нетривиальной задачей, потому что просто так в столбик его не вычислить: число это не только иррациональное, но и трансцендентное (это вот как раз такие числа, которые не вычисляются путем простых уравнений).

В процессе вычислений этих самых знаков было открыто множество разных научных методов и целых наук. Но самое главное – в десятичной части числа пи нет повторений, как в обычной периодической дроби, а число знаков после запятой у него – бесконечно. На сегодняшний день проверено, что в 500 млрд. знаков числа пи повторений действительно нет. Есть основания полагать, что их нет вообще.

Поскольку в последовательности знаков числа пи нет повторений – это значит, что последовательность знаков числа пи подчиняется теории хаоса, точнее, число пи – это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен.

В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых!

В десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

Ну и что? – спросите вы. А то. Прикиньте: если там есть ваш телефон (а он есть), то ведь там же есть и телефон той девушки, которая не захотела дать вам свой номер. Более того, там есть и номера кредиток, и даже все значения выигрышных номеров завтрашнего тиража лотереи. Да что там, вообще всех лотерей на много тысячелетий вперед. Вопрос в том, как их там отыскать…

Если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания в числе ПИ не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то ВСЕ. В том числе и такие, которые соответствуют выбранной вами книге.

А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны. В том числе и Ваши статьи на сайтах. Получается, что это число (единственное разумное число во Вселенной!) и управляет нашим миром. Надо только рассмотреть побольше знаков, найти нужный участок и расшифровать его. Это чем-то сродни парадоксу со стадом шимпанзе, долбящем по клавиатуре. При достаточно долгом (можно даже оценить это время) эксперименте они напечатают все пьесы Шекспира.

Тут же напрашивается аналогия с периодически появляющимися сообщениями о том, что в Ветхом Завете, якобы, закодированы послания потомкам, поддающиеся прочтению с помощью хитроумных программ. Отметать сходу такую экзотическую особенность Библии не совсем мудро, кабаллисты веками занимаются поиском таких пророчеств, но хотелось бы привести сообщение одного исследователя, который с помощью компьютера нашел в Ветхом завете слова о том, что в Ветхом Завете нет никаких пророчеств. Скорее всего, в очень большом тексте, так же, как и в бесконечных цифрах числа ПИ, можно не только закодировать любую информацию, но и “найти” фразы, изначально не заложенные туда.

Для практики, в пределах Земли достаточно 11 знаков после точки. Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру в числе ПИ после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать число ПИ с четырнадцатью знаками после точки, да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XVII веке были получены 34 знака числа ПИ, избыточные для таких расстояний, а их на данный момент вычислено до 12411-триллионного знака !!!

Отсутствие периодически повторяющихся цифр, а именно, исходя их формулы Длина окружности=Пи*D окружность не замыкается, так как нет конечного числа. Этот факт также может тесно быть связан с спиральным проявлением в нашей жизни …

Есть еще гипотеза о том, что все (или некоторые) универсальные постоянные (постоянная Планка, число Эйлера, универсальная гравитационная постоянная, заряд электрона и т.д.) со временем меняют свои значения, так как меняется кривизна пространства из-за перераспределения материи или по другим, не известным нам причинам.

Рискуя навлечь гнев просвещенного сообщества, можем предположить, что и рассматриваемое сегодня число ПИ, отражающее свойства Вселенной, может со временем меняться. Во всяком случае, никто не может нам запретить заново найти значение числа ПИ, подтвердив (или не подтвердив) имеющиеся значения.

10 интересных фактов про число ПИ

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой «π» число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение. Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни. Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документу Пи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн, создавший, как известно, теорию относительности.

ЧИСЛО p – отношение длины окружности к ее диаметру, – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение, принято обозначать греческой буквой 241 (от «perijereia » – окружность, периферия). Это обозначение стало употребительным после работы Леонарда Эйлера , относящейся к 1736, однако впервые оно было употреблено Уильямом Джонсом (1675–1749) в 1706. Как и всякое иррациональное число, оно представляется бесконечной непериодической десятичной дробью:

p = 3,141592653589793238462643… Нужды практических расчетов, относящихся к окружностям и круглым телам, заставили уже в глубокой древности искать для 241 приближений с помощью рациональных чисел. Сведения о том, что окружность ровно втрое длиннее диаметра, находятся в клинописных табличках Древнего Междуречья. Такое же значение числа p есть и в тексте Библии: «И сделал литое из меди море, – от края до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (3 Цар. 7. 23). Так же считали и древние китайцы. Но уже во 2 тыс. до н.э. древние египтяне пользовались более точным значением числа 241, которое получается из формулы для площади круга диаметра d :

Этому правилу из 50-й задачи папируса Райнда соответствует значение 4(8/9) 2 » 3,1605. Папирус Райнда, найденный в 1858, назван так по имени его первого владельца, его переписал писец Ахмес около 1650 до н.э., автор же оригинала неизвестен, установлено только, что текст создавался во второй половине 19 в. до н.э. Хотя каким образом египтяне получили саму формулу, из контекста неясно. В так называемом Московском папирусе, который был переписан неким учеником между 1800 и 1600 до н.э. с более древнего текста, примерно 1900 до н.э., есть еще одна интересная задача о вычислении поверхности корзины «с отверстием 4½». Неизвестно, какой формы была корзина, но все исследователи сходятся во мнении, что и здесь для числа p берется то же самое приближенное значение 4(8/9) 2 .

Чтобы понять, каким образом древние ученые получили тот или иной результат, нужно попытаться решить задачу, используя только знания и приемы вычислений того времени. Именно так поступают исследователи старинных текстов, однако решения, которые им удается найти, вовсе не обязательно «те самые». Очень часто для одной задачи предлагается несколько вариантов решения, каждый может выбрать себе по вкусу, однако никто не может утверждать, что именно им пользовались в древности. Относительно площади круга кажется правдоподобной гипотеза А.Е.Раик, автора многочисленных книг по истории математики: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами и (рис. 1). В наших обозначениях вычисления будут выглядеть так: в первом приближении площадь круга S равна разности между площадью квадрата со стороной d и суммарной площадью четырех малых квадратов А со стороной d :

В пользу этой гипотезы свидетельствуют аналогичные вычисления в одной из задач Московского папируса, где предлагается сосчитать

С 6 в. до н.э. математика стремительно развивалась в Древней Греции. Именно древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру (l = 2 p R ; R – радиус окружности, l – ее длина), а площадь круга равна половине произведения длины окружности и радиуса:

S = ½ l R = p R 2 .

Эти доказательства приписывают Евдоксу Книдскому иАрхимеду .

В 3 в. до н.э. Архимед в сочинении Об измерении круга вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников (рис. 2) – от 6- до 96-угольника. Таким образом он установил, что число p находится между 3 10/71 и 3 1/7, т.е. 3,14084 < p < 3,14285. Последнее значение до сих пор используется при расчетах, не требующих особой точности. Более точное приближение 3 17/120 (p » 3,14166) нашел знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

Индийцы и арабы полагали, что p = . Это значение приводит так же и индийский математик Брахмагупта (598 – ок. 660). В Китае ученые в 3 в. использовали значение 3 7/50, которое хуже приближения Архимеда, но во второй половине 5 в. Цзу Чун Чжи (ок. 430 – ок. 501) получил для p приближение 355/113 (p » 3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом только в 1585. Это приближение дает ошибку лишь в седьмом десятичном знаке.

Поиски более точного приближения p продолжались и в дальнейшем. Например, аль-Каши (первая половина 15 в.) в Трактате об окружности (1427) вычислил 17 десятичных знаков p . В Европе такое же значение было найдено в 1597 году. Для этого ему пришлось вычислять сторону правильного 800 335 168-угольника. Нидерландский ученый Лудольф Ван Цейлен (1540–1610) нашел для него 32 правильных десятичных знака (опубликовано посмертно в 1615), это приближение называется лудольфовым числом.

Число p появляется не только при решении геометрических задач. Со времени Ф.Виета (1540–1603) разыскание пределов некоторых арифметических последовательностей, составляемых по простым законам, приводило к тому же числу p . В связи с этим в определении числа p принимали участие почти все известные математики: Ф.Виет, Х.Гюйгенс , Дж.Валлис, Г.В.Лейбниц , Л.Эйлер . Они получали различные выражения для 241 в виде бесконечного произведения, суммы ряда, бесконечной дроби.

Например, в 1593 Ф.Виет (1540–1603) вывел формулу

В 1658 англичанин Уильям Броункер (1620–1684) нашел представление числа p в виде бесконечной непрерывной дроби

однако неизвестно, как он пришел к этому результату.

В 1665 Джон Валлис (1616–1703) доказал, что

Эта формула носит его имя. Для практического нахождения числа 241 она мало пригодна, но полезна в различных теоретических рассуждениях. В историю науки она вошла как один из первых примеров бесконечных произведений.

Готфрид Вильгельм Лейбниц (1646–1716) в 1673 установил следующую формулу:

выражающую число p /4 как сумму ряда. Однако этот ряд сходится очень медленно. Чтобы вычислить p с точностью до десяти знаков, потребовалось бы, как показал Исаак Ньютон, найти сумму 5 млрд чисел и затратить на это около тысячи лет непрерывной работы.

Лондонский математик Джон Мэчин (1680–1751) в 1706, применяя формулу

получил выражение

которая до сих пор считается одной из лучших для приближенного вычисления p . Чтобы найти те же десять точных десятичных знаков, потребуется всего несколько часов ручного счета. Сам Джон Мэчин вычислил p со 100 верными знаками.

C помощью того же ряда для arctg x и формулы

значение числа p было получено на ЭВМ с точностью до ста тысяч десятичных знаков. Такого рода вычисления представляют интерес в связи с понятием случайных и псевдослучайных чисел. Статистическая обработка упорядоченной совокупности указанного количества знаков p показывает, что она обладает многими чертами случайной последовательности.

Есть несколько забавных способов запомнить число p точнее, чем просто 3,14. Например, выучив следующее четверостишие, можно без труда назвать семь десятичных знаков p :

Нужно только постараться

И запомнить все как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть .

(С.Бобров Волшебный двурог )

Подсчет количества букв в каждом слове следующих фраз так же дает значение числа p :

«Что я знаю о кругах?» (p » 3,1416). Эту поговорку предложил Я.И.Перельман.

«Вот и знаю я число, именуемое Пи. – Молодец!» (p » 3,1415927).

«Учи и знай в числе известном за цифрой цифру, как удачу примечать» (p » 3,14159265359).

Учитель одной из московских школ придумал строку: «Это я знаю и помню прекрасно», а его ученица сочинила забавное продолжение: «Пи многие знаки мне лишни, напрасны». Это двустишие позволяет определить 12 цифр.

А так выглядит 101 знак числа p без округления

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ значение числа p вычислено с миллионами правильных знаков, но такая точность не нужна ни в каких вычислениях. А вот возможность аналитического определения числа ,

В последней формуле в числителе стоят все простые числа, а знаменатели отличаются от них на единицу, причем знаменатель больше числителя, если тот имеет вид 4n + 1, и меньше в противном случае.

Хотя еще с конца 16 в., т.е. с тех пор, как сформировались сами понятия рациональных и иррациональных чисел, многие ученые были убеждены в том, что p – число иррациональное, но только в 1766 немецкий математик Иоганн Генрих Ламберт (1728–1777), основываясь на открытой Эйлером зависимости между показательной и тригонометрической функциями, строго доказал это. Число p не может быть представлено в виде простой дроби, как ни были бы велики числитель и знаменатель.

В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом , доказал, что p – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения a n x n + a n– 1 x n– 1 + … + a 1 x + a 0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа p .

В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква p .

Марина Федосова

Число π показывает, во сколько раз длина окружности больше ее диаметра. Неважно, какого размера окружность, - как заметили по меньшей мере еще 4 тыс. лет назад, соотношение всегда остается одним и тем же. Вопрос только, чему оно равняется.

Чтобы высчитать его приблизительно, достаточно обыкновенной нитки. Грек Архимед в III веке до н.э. применял более хитрый способ. Он чертил внутри и снаружи окружности правильные многоугольники. Складывая длины сторон многоугольников, Архимед все точнее определял вилку, в которой находится число π, и понял, что оно приблизительно равно 3,14.

Методом многоугольников пользовались еще почти 2 тыс. лет после Архимеда, это позволило узнать значение числа π вплоть до 38-й цифры после запятой. Еще один-два знака - и можно с точностью до атома рассчитать длину окружности с диаметром как у Вселенной.

Пока одни ученые использовали геометрический метод, другие догадались, что число π можно рассчитывать, складывая, вычитая, деля или умножая другие числа. Благодаря этому "хвост" вырос до нескольких сотен цифр после запятой.

С появлением первых вычислительных машин и особенно современных компьютеров точность повысилась на порядки - в 2016 году швейцарец Петер Трюб определил значение числа π до 22,4 трлн знаков после запятой . Если напечатать этот результат в строчку 14-м кеглем нормальной ширины, то запись получится немногим короче, чем среднее расстояние от Земли до Венеры.

В принципе ничто не мешает добиться еще большей точности, но для научных расчетов в этом давно нет нужды - разве что для тестирования компьютеров, алгоритмов и для исследований в математике. А исследовать есть что. Даже про само число π известно не все. Доказано, что оно записывается в виде бесконечной непериодической дроби , то есть цифрам после запятой нет предела, и они не складываются в повторяющиеся блоки. Но вот с одинаковой ли частотой появляются цифры и их комбинации, неясно. Судя по всему, это так, но пока никто не привел строгого доказательства.

Дальнейшие вычисления проводятся в основном из спортивного интереса - и по той же причине люди пытаются запомнить как можно больше цифр после запятой. Рекорд принадлежит индийцу Раджвиру Мине, который в 2015 году назвал на память 70 тыс. знаков , сидя с завязанными глазами почти десять часов.

Наверное, чтобы превзойти его результат, нужен особый талант. Но просто удивить друзей хорошей памятью способен каждый. Главное - использовать одну из мнемонических техник, которая потом может пригодиться и для чего-нибудь еще.

Структурировать данные

Самый очевидный способ - разбить число на одинаковые блоки. Например, можно представить π как телефонную книгу с десятизначными номерами, а можно - как причудливый учебник истории (и будущего), где перечислены годы. Много так не запомнишь, но, чтобы произвести впечатление, хватит и пары десятков знаков после запятой.

Превратить число в историю

Считается, что самый удобный способ запомнить цифры - придумать историю, где им будет соответствовать количество букв в словах (ноль было бы логично заменить пробелом, но тогда большинство слов сольется; вместо этого лучше использовать слова из десяти букв). По этому принципу построена фраза "Можно мне большую упаковку кофейных зерен?" на английском языке:

May - 3,

have - 4

large - 5

container - 9

coffee - 6

beans - 5

В дореволюционной России придумали похожее предложение: "Кто и шутя и скоро пожелает(ъ) Пи узнать число, уже знает(ъ)". Точность - до десятого знака после запятой: 3,1415926536. Но проще запомнить более современный вариант: "Она и была, и будет уважаемая на работе". Есть и стихотворение: "Это я знаю и помню прекрасно - пи, многие знаки мне лишни, напрасны". А советский математик Яков Перельман сочинил целый мнемонический диалог:

Что я знаю о кругах? (3,1415)

Вот и знаю я число, именуемое пи - молодец! (3,1415927)

Учи и знай в числе известном за цифрой цифру, как удачу примечать! (3,14159265359)

Американский математик Майкл Кит и вовсе написал целую книгу Not A Wake, в тексте которой содержится информация о первых 10 тыс. цифр числа π.

Заменить цифры буквами

Кому-то легче запомнить бессвязные буквы, чем случайные цифры. В этом случае цифры заменяются первыми буквами алфавита. Первое слово в названии рассказа Cadaeic Cadenza Майкла Кита появилось именно таким образом. Всего в этом произведении закодировано 3835 знаков числа пи - правда, тем же способом, что в книге Not a Wake.

В русском языке для подобных целей можно использовать буквы от А до И (последняя будет соответствовать нолю). Насколько удобно будет запоминать составленные из них комбинации - вопрос открытый.

Придумать образы для комбинаций цифр

Чтобы добиться по-настоящему выдающихся результатов, предыдущие методы не годятся. Рекордсмены используют технику визуализации: изображения запомнить легче, чем цифры. Сначала нужно сопоставить каждую цифру с согласной буквой. Получится, что каждому двухзначному числу (от 00 до 99) соответствует двухбуквенное сочетание.

Допустим, один - это "н", четыр е - "р", пят ь - "т". Тогда число 14 - это "нр", а 15 - "нт". Теперь эти пары следует дополнить другими буквами, чтобы получилось слова, например, "н ор а" и "н ит ь". Всего понадобится сто слов - вроде бы много, но за ними стоят всего десять букв, поэтому запомнить не так уж сложно.

Число π предстанет в уме как последовательность образов: три целых, нора, нить и т.п. Чтобы лучше запомнить эту последовательность, изображения можно нарисовать или распечатать на принтере и поставить перед глазами. Некоторые люди просто раскладывают соответствующие предметы по комнате и вспоминают числа, разглядывая интерьер. Регулярные тренировки по этому методу позволят запомнить сотни и даже тысячи знаков после запятой - или любую другую информацию, ведь визуализировать можно не только числа.

Марат Кузаев, Кристина Недкова

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C 1 C 2
=
d 1 d 2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π . Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π :

C = π d.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2π R.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

Откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

8 2
S = ( d )
9

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

Какое из двух числе больше 22/7 или 3.14 ?
- Они равны.
- Почему?
- Каждое из них равно π .
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π .

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π . В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

10 6336 14688 1
3 < < π < < 3
71 1 1 7
2017 4673
4 2

можно записать проще: 3,140 909 < π < 3,1 428 265...

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после запятой: 3,14... Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π , это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

π D 2
S=π R 2 =
4

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 π R = π d,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

где D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

α
S = π R 2
360 ˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

1. Актуальность работы.

В бесконечном множестве чисел, так же как среди звезд Вселенной, выделяются отдельные числа и целые их «созвездия» удивительной красоты, числа с необыкновенными свойствами и своеобразной, только им присущей гармонией. Надо только уметь увидеть эти числа, заметить их свойства. Всмотритесь в натуральный ряд чисел - и вы найдете в нем много удивительного и диковинного, забавного и серьезного, неожиданного и курьезного. Видит тот, кто смотрит. Ведь люди и в летнюю звездную ночь не заметят… сияние. Полярной звезды, если не направят свой взор в безоблачную высь.

Переходя из класса в класс я познакомился с натуральными, дробными, десятичными, отрицательными, рациональными. В этом году я изучил иррациональные. Среди иррациональных чисел есть особое число, точными вычислениями которого занимаются ученые уже много веков. Оно встретилось мне ещё в 6 классе при изучении темы «Длина окружности и площадь круга». Было акцентировано внимание на то, что довольно часто будем встречаться с ним на уроках в старших классах. Интересны были практические задания на нахождение числового значения числа π. Число π является одним из интереснейших чисел, встречающихся при изучении математики. Оно встречается в разных школьных дисциплинах. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению.

Услышав об этом числе много интересного, я сам решил путём изучения дополнительной литературы и поиска в Интернете узнать как можно больше информации о нём и ответить на проблемные вопросы:

Как давно люди знали о числе пи?

Для чего необходимо его изучение?

Какие интересные факты с ним связаны

Верно ли, что значение пи равно приближённо 3,14

Поэтому, перед собой я поставил цель: исследовать историю числа π и значимость числа π на современном этапе развития математики.

Задачи:

Изучить литературу с целью получения информации об истории числа π;

Установить некоторые факты из «современной биографии» числа π;

Практическое вычисление приближенного значения отношения длины окружности к диаметру.

Объект исследования:

Объект исследования: Число ПИ.

Предмет исследования: Интересные факты, связанные с числом ПИ.

2. Основная часть. Удивительное число π.

Никакое другое число не является таким загадочным, как "Пи" с его знаменитым никогда не кончающимся числовым рядом. Во многих областях математики и физики ученые используют это число и его законы.

Мало какому числу из всех чисел, которые используются в математике, в естественных науках, в инженерном деле и в повседневной жизни, уделяется столько внимания, сколько уделяется числу пи. В одной книге говорится: «Число пи захватывает умы гениев науки и математиков-любителей во всем мире» («Fractals for the Classroom»).

Его можно встретить в теории вероятностей, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.

Некоторые даже считают его одним из пяти важнейших чисел в математике. Но, как отмечается в книге «Fractals for the Classroom», при всей важности числа пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков пи».

3. Понятие числа пи

Число π — математическая константа, выражающая отношение длины окружности к длине ее диаметра . Число π (произносится «пи» ) —математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».

В цифровом выражении π начинается как 3,141592 и имеет бесконечную математическую продолжительность.

4. История числа "пи"

Как считают специалисты, это число было открыто вавилонскими магами . Оно использовалось при строительстве знаменитой Вавилонской башни. Однако недостаточно точное исчисление значения Пи привело к краху всего проекта. Возможно, что эта математическая константа лежала в основе строительства легендарного Храма царя Соломона.

История числа пи, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. π = 3,160...

В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным, что даёт дробь 3,162... Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.

Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:

    Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;

    Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ;

    Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .

По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, что π = 3,1419... Истинное значение этого отношения 3,1415922653... В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа: 3,1415927...

В первой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил пи с 16 десятичными знаками. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1" . Эти таблицы сыграли важную роль в астрономии.

Спустя полтора столетия в Европе Ф.Виет нашёл число пи только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что пи можно отыскать, используя пределы некоторых рядов. Это открытие имело большое

значение, так как позволило вычислить пи с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.

День рождения числа “” .

Неофициальный праздник «День числа ПИ» отмечается 14 марта, которое в американском формате (день/ число) записывается как 3/14, что соответствует приближенному значению числа ПИ.

Существует и альтернативный вариант праздника - 22 июля. Он называется "День приближенного числа Пи". Дело в том, что представление этой даты в виде дроби (22/7) также дает в виде результата число Пи. Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, дата и время совпадают с первыми разрядами числа π.

Интересные факты, связанные с числом “”

Ученые Токийского университета под руководством профессора Ясумаса Канада сумели поставить мировой рекорд в вычислениях числа Пи до 12411-триллионного знака. Для этого группе программистов и математиков понадобилась специальная программа, суперкомпьютер и 400 часов машинного времени. (Книга рекордов Гиннеса).

Германский король Фридрих Второй был настолько очарован эти числом, что посвятил ему …целый дворец Кастель дель Монте, в пропорциях которого можно вычислить ПИ. Сейчас волшебный дворец находится под охраной ЮНЕСКО.

Как запомнить первые цифры числа “ ”.

Три первые цифры числа  = 3,14… запомнить совсем несложно. А для запоминания большего числа знаков существуют забавные поговорки и стихи. Например, такие:

Нужно только постараться

И запомнить всё как есть:

Девяносто два и шесть.

С.Бобров. ”Волшебный двурог”

Тот, кто выучит это четверостишие, всегда сможет назвать 8 знаков числа :

В следующих фразах знаки числа  можно определить по количеству букв в каждом слове:

Что я знаю о кругах?” (3,1416);

Вот и знаю я число, именуемое Пи. - Молодец!”

(3,1415927);

Учи и знай в числе известном за цифрой цифру, как удачу примечать”

(3,14159265359)

5. Обозначение числа пи

Первым ввёл обозначение отношения длины окружности к диаметру современным символом пи английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало общеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г.

В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число пи иррационально. Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Поиски точного выражения пи продолжались и после работ Ф.Виета . В начале XVII в. голландский математик из КёльнаЛудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа .

6. Как запомнить число "Пи" с точностью до одиннадцати знаков

Число "Пи" - это отношение длины окружности к ее диаметру, оно выражается бесконечной десятичной дробью. В обиходе нам достаточно знать три знака (3,14). Однако в некоторых расчетах нужна большая точность.

У наших предков не было компьютеров, калькуляторов и справочников, но со времен Петра I они занимались геометрическими расчетами в астрономии, в машиностроении, в корабельном деле. Впоследствии сюда добавилась электротехника - там есть понятие "круговой частоты переменного тока". Для запоминания числа "Пи" было придумано двустишие (к сожалению, мы не знаем автора и места первой публикации его; но еще в конце 40-х годов двадцатого века московские школьники занимались по учебнику геометрии Киселева, где оно приводилось).

Двустишие написано по правилам старой русской орфографии, по которой послесогласной в конце слова обязательно ставился "мягкий" или "твердый" знак. Вот оно, это замечательное историческое двустишие:

Кто и шутя, и скоро пожелаетъ

"Пи" узнать число - ужъ знаетъ.

Тому, кто собирается в будущем заниматься точными расчетами, имеет смысл это запомнить. Так чему же равно число "Пи" с точностью до одиннадцати знаков? Сосчитай количество букв в каждом слове и напиши эти цифры подряд (первую цифру отдели запятой).

Такой точности уже вполне достаточно для инженерных расчетов. Кроме старинного существует и современный способ запоминания, на который указал в читатель, назвавшийся Георгием:

Чтобы нам не ошибаться,

Надо правильно прочесть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Надо только постараться

И запомнить всё как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Три, четырнадцать, пятнадцать,

Девять, два, шесть, пять, три, пять.

Чтоб наукой заниматься,

Это каждый должен знать.

Можно просто постараться

И почаще повторять:

«Три, четырнадцать, пятнадцать,

Девять, двадцать шесть и пять.»

Ну а математики с помощью современных компьютеров могут вычислить практически любое количество знаков числа "Пи".

7. Рекорд запоминания числа пи

Запомнить знаки пи человечество пытается уже давно. Но как уложить в память бесконечность? Любимый вопрос мнемонистов-профессионалов. Разработано множество уникальных теорий и приёмов освоения огромного количества информации. Многие из них опробованы на пи.

Мировой рекорд, установленный в прошлом столетии в Германии - 40 000 знаков. Российский рекорд значений числа пи 1 декабря 2003 года в Челябинске установил Александр Беляев. За полтора часа с небольшими перерывами на школьной доске Александр написал 2500 цифр числа пи.

До этого рекордным в России считалось перечислить 2000 знаков, что удалось сделать в 1999 году в Екатеринбурге. По словам Александра Беляева - руководителя центра развития образной памяти, такой эксперимент со своей памятью может провести любой из нас. Важно лишь знать специальные техники запоминания и периодически тренироваться.

Заключение.

Число пи появляется в формулах, используемых во многих сферах. Физика, электротехника, электроника, теория вероятностей, строительство и навигация - это лишь некоторые из них. И кажется, что подобно тому как нет конца знакам числа пи, так нет конца и возможностям практического применения этого полезного, неуловимого числа пи.

В современной математике число пи - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул.

Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа пи.

Точное значение числа π в современном мире представляет собой не только собственную научную ценность, но и используется для очень точных вычислений (например, орбиты спутника, строительства гигантских мостов), а также оценки быстродействия и мощности современных компьютеров.

В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Всё это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.

Проведенная работа мне была интересной. Я хотел узнать об истории числа π, практическом применении и думаю, что достиг поставленной цели. Подводя итог работы, я прихожу к выводу, что данная тема актуальна. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению. В своей работе я подробнее познакомился с числом - одной из вечных ценностей, которой человечество пользуется уже много веков. Узнал некоторые аспекты его богатейшей истории. Выяснил, почему древний мир не знал правильного отношения длины окружности к диаметру. Посмотрел наглядно, какими способами можно получить число. На основе экспериментов вычислил приближенное значение числа различными способами. Провел обработку и анализ результатов эксперимента.

Любой школьник сегодня должен знать, что обозначает и чему приближенно равно число. Ведь у всех первое знакомство с числом, использование его при вычислении длины окружности, площади круга происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными и уже через год - два мало кто помнит не только то, что отношение длины окружности к её диаметру одно и то же для всех окружностей, но даже с трудом вспоминают численное значение числа, равное 3,14.

Я попробовал приподнять завесу богатейшей истории числа, которым человечество пользуется уже много веков. Самостоятельно составил презентацию к своей работе.

История чисел увлекательна и загадочна. Я хотел бы продолжить исследования других удивительных чисел в математике. Это станет объектом моих следующих исследовательских изучений.

Список литературы.

1. Глейзер Г.И. История математики в школе IV- VI классы. - М.: Просвещение, 1982.

2. Депман И.Я., Виленкин Н.Я. За страницами учебника математики - М.: Просвещение, 1989.

3. Жуков А.В.Вездесущее число «пи». - М.: Едиториал УРСС, 2004.

4. Кымпан Ф. История числа «пи». - М.: Наука, 1971.

5. Свечников А.А. путешествие в историю математики - М.: Педагогика - Пресс, 1995.

6. Энциклопедия для детей. Т.11.Математика - М.: Аванта +, 1998.

Интернетресурсы:

- http:// crow.academy.ru/ materials_/pi/history.htm

Http://hab/kp.ru// daily/24123/344634/

Включайся в дискуссию
Читайте также
Налоговая декларация для ип на усн Образец заполнения кнд 1152017
Где в бухгалтерском балансе стоимость активов Раздел iii
Как теперь определять первоначальную стоимость основных средств по мсфо