Подпишись и читай
самые интересные
статьи первым!

Правая и левая система координат. Декартовы прямоугольные системы координат

Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных осей, пересекающихся в одной точке О, именуемой началом координат.

Координатные оси обычно обозначают буквами и называют соответственно осью абсцисс, осью ординат, осью аппликат, или же осью осью Оу, осью (рис. 33).

Орты координатиых осей Ох, Оу, Oz обозначаются соответственно или Мы будем пользоваться преимущественно последним обозначением.

Различают правую и левую координатные системы.

Система координат называется правой, если из конца третьего орта к поворот от первого орта ко второму орту видел происходящим против хода стрелки часов (рис. 34, а).

Система координат называется левой, если из конца третьего орта поворот от первого орта ко второму орту виден происходящим по ходу часовой стрелки (рис. 34, б).

Таким образом, если ввинчивать винт в направлении вектора к, вращая его от то в случае правой системы резьба должпа быть правой, а в случае левой системы - левой (рис. 35).

Многие положения векторной алгебры не зависят от того, пользуемся ли мы правой или левой системой координат. Однако иногда это обстоятельство имеет значение. В дальнейшем мы всегда будем примепять правую систему координат, как это принято в физике.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Если через точку пространства проведены три попарно перпендикулярные прямые, на каждой из которых выбрано направление и единичный отрезок, то говорят, что задана прямоугольная система координат в пространстве.

Прямые с выбранными на них направлениями называются осями координат и обозначаются так: Ох, Оy, Оz, имеют свои названия: ось абсцисс, ось ординат и ось аппликат соответственно, а их общая точка - началом координат. Обычно она обозначается буквой О.

Вся система координат обозначается Охуz.

Если через оси координат Ох и Оу, Оу и Оz, Оz и Ох провести плоскости, то такие плоскости будут называться координатными плоскостями и обозначаться: Оху, Оуz, Оzх соответственно.

Точка О разделяет каждую из осей координат на два луча. Луч, направление которого совпадает с направлением оси, называется положительной полуосью, а другой луч — отрицательной полуосью.

В прямоугольной системе координат каждой точке М пространства сопоставляется тройка чисел, которые называются ее координатами. Они определяются аналогично координатам точек на плоскости.

Посмотрим, как это делается.

Проведем через точку М три плоскости, перпендикулярные осям координат, и обозначим через М₁, М₂ и М₃ точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат.

Первая координата точки М (она называется абсциссой и обозначается обычно буквой х) определяется так: х = ОМ₁, если М₁ - точка положительной полуоси;

х= - ОМ₁, если М₁ - точка отрицательной полуоси; х =0, если М₁ совпадает с точкой О.

Аналогично с помощью точки М₂ определяется вторая координата (ордината) у точки М,

а с помощью точки М₃ — третья координата (аппликата) z точки М.

Координаты точки М записываются в скобках после обозначения точки М (х; у; z).

Запомните, что первой указывают абсциссу, второй - ординату, третьей — аппликату.

Найдем координаты точек А, В, С, D, E, F, представленные на рисунке.

Проведем через точку А три плоскости, перпендикулярные к осям координат, тогда точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат будут координатами точки А. Точка А имеет координаты: абсцисса = 9, ордината = 5, аппликата = 10 и записывается это так: А (9; 5;10).

Аналогично записываются координаты следующих точек:

Точка В имеет координаты: абсцисса = 4, ордината = -3, аппликата = 6

Точка С имеет координаты: абсцисса = 9, ордината = 0, аппликата = 0

Точка имеет D координаты: абсцисса = 4, ордината = 0, аппликата = 5

Точка Е имеет координаты: абсцисса = 0, ордината = 8, аппликата = 0

Точка F имеет координаты: абсцисса = 0, ордината = 0, аппликата = -3

Если точка М (х; у; z) лежит на координатной плоскости на оси координат, то некоторые ее координаты равны нулю.

Если МЄОху (точка М принадлежит плоскости Оху), то аппликата точки М равна нулю: z=0.

Аналогично, если МЄОхz (точка М принадлежит плоскости Оxz), то у = 0, а если МЄОуz (точка М принадлежит плоскости Oyz), то х = 0.

Если МЄОх (точка М лежит на оси абсцисс) ордината и аппликата точки М равны нулю: у=о и z=0. В нашем примере это точка С.

Если МЄОу (точка М лежит на оси ординат), то х=0 и z=0. В нашем примере это точка Е.

Если МЄОz (точка М лежит на оси аппликат), то х = 0 и у = 0. В нашем примере это точка F.

Если все три координаты точки М равны нулю, то это значит, что М=О (0; 0; 0) - начало координат.

Даны координаты четырех вершин куба ABCDA 1 B 1 C 1 D 1: A(0; 0; 0); B(0; 0; 1); D(0; 1; 0); A 1 (1; 0; 0). Найдите координаты остальных вершин куба.

Так как фигура — куб, то все стороны равны единице, все грани являются квадратами.

Точка С принадлежит плоскости Оху, то есть ее координата z равна нулю, координата х равна стороне СД и равна АВ, значит равна единице, координата игрек равна стороне куба СВ, значит равна АД и равна единице.

Аналогично, Точка В 1 принадлежи плоскости Охz, то еcть ее координата y равна нулю, координата х равна стороне координата х равна стороне А1B1 и равна АВ значит равна единице, координата зет равна стороне куба В В1значит равна АА1 и равна единице.

Точка Д 1 принадлежи плоскости Оуz, то еcть ее координата х равна нулю, координата у равна стороне А 1 Д 1 и равна АД, значит равна единице, координата зет равна стороне куба А 1 В 1 , значит равна АВ и равна единице.

Точка С 1 не принадлежит никакой плоскости, то еcть все координаты отличны от нуля, координата х равна стороне C 1 D 1 и равна АB, значит равна единице, координата игрек равна стороне куба В 1 С 1 , значит равна АД и равна единице, и координата зет равна стороне CC 1 , то есть AA 1 и также равна единице.

Найдите координаты проекций точки C(; ;) на координатные плоскости Oxy, Oxz, Oyz и координатные оси Ox, Oy, Oz.

1) опустим перпендикуляры на плоскость Oxy— это CN, на плоскость Oxz - CL, и на плоскость Oyz прямая CR.

Таким образом, проекция точки С на плоскость Oxy это точка N и она имеет координаты икс равный минус корень из трех, игрек равен минус корень из двух на два, зет равнен нулю.

Проекция точки С на плоскость Oxz - это точка L и она имеет координаты икс равен минус корень из трех, игрек равен нулю, зет равен корень из пяти минус корень из трех.

Проекция точки С на плоскость Oyz- это точка R и она имеет координаты икс равен нулю, игрек равен минус корень из двух на два, зет равен корень из пяти минус корень из трех.

2)Из точки N проводим перпендикуляры на ось Ох - прямая NK, а на Оу - прямая NG, и на ось Оz проводим перпендикуляр из точки R- это прямая RP.

Проекция точки С на ось Ох - точка К имеет координаты икс равный минус корень из трех, а игрек и зет равны нулю.

Проекция точки С на ось Оy- точка G имеет координаты икс и зет равны нулю, игрек равен минус корень из двух на два.

Проекция точки С на ось Оz- точка P имеет координаты икс и игрек равны нулю, зет равный корень из пяти минус корень из трех.

Определение положения точки в пространстве

Итак, положение какой-либо точки в пространстве может быть определено только по отношению к каким-либо другим точкам. Та точка, относительно которой рассматривается положение других точек, называется точкой отсчете . Мы так же применим и другое наименование точки отсчета – точка наблюдения . Обычно с точкой отсчета (или с точкой наблюдения) связывают какую-либо систему координат , которую и называют системой отсчета. В выбранной системе отсчета положение КАЖДОЙ точки определяется ТРЕМЯ координатами.

Правая декартова (или прямоугольная) система координат

Эта система координат представляет собой три взаимно перпендикулярных направленных прямых, называемых так же осями координат , пересекающихся в одной точке (начале координат). Точка начала координат обычно обозначается буквой О.

Оси координат носят названия:

1. Ось абсцисс – обозначается как OX;

2. Ось ординат – обозначается как OY;

3. Ось аппликат – обозначается как OZ


Теперь объясним, почему эта система координат называется правой. Давайте посмотрим на плоскость XOY с положительного направления оси OZ, например из точки А, как это показано на рисунке.

Предположим, что мы начинаем поворачивать ось OX вокруг точки О. Так вот – правая система координат имеет такое свойство, что, если смотреть на плоскость XOY из какой-либо точки положительной полуоси OZ (у нас – это точка А), то, при повороте оси OX на 90 против часовой стрелки, её положительное направление совпадет с положительным направлением оси OY.

Такое решение было принято в научном мире, нам же остается принимать это так, как оно есть.


Итак, после того, как мы определились с системой отсчета (в нашем случае – правой декартовой системой координат), положение любой точки описывается через значения её координат или другими словами – через величины проекций этой точки на оси координат.

Записывается это так: A(x, y, z), где x, y, z – и есть координаты точки А.

Прямоугольную систему координат можно представить себе, как линии пересечения трех взаимно перпендикулярных плоскостей.

Следует заметить, что ориентировать прямоугольную систему координат в пространстве можно как угодно, при этом надо выполнить только одно условие – начало координат должно совпадать с центром отсчета (или точкой наблюдения).


Сферическая система координат

Положение точки в пространстве можно описать и другим способом. Предположим, что мы выбрали область пространства, в котором располагается точка отсчета О (или точка наблюдения), и еще нам известно расстояние от точки отсчета до некоторой точки А. Соединим эти две точки прямой ОА. Эта прямая называется радиус-вектором и обозначается, как r . Все точки, имеющие одно и тоже значение радиус-вектора, лежат на сфере, центр которой находится в точке отсчета (или точке наблюдения), а радиус этой сферы равен, соответственно радиус-вектору.

Таким образом, нам становится очевидным, что знание величины радиус-вектора не дает нам однозначного ответа о положении интересующей нас точки. Нужны еще ДВЕ координаты, ведь для однозначного определения местоположения точки количество координат должно равняться ТРЕМ.

Далее мы поступим следующим образом – построим две взаимно перпендикулярные плоскости, которые, естественно, дадут линию пересечения, и эта линия будет бесконечной, потому как и сами плоскости ничем не ограничены. Зададим на этой линии точку и обозначим ее, ну например, как точка О1. А теперь совместим эту точку О1 с центром сферы – точкой О и посмотрим, что получается?


А получается очень интересная картина:

· Как одна, так и другая плоскости будут центральными плоскостями.

· Пересечение этих плоскостей с поверхностью сферы обозначат большие круги

· Один из этих кругов – произвольно, мы назовем ЭКВАТОРОМ , тогда другой круг будет называться ГЛАВНЫМ МЕРИДИАНОМ.

· Линия пересечения двух плоскостей однозначно определит направление ЛИНИИ ГЛАВНОГО МЕРИДИАНА.


Точки пересечения линии главного меридиана с поверхностью сферы обозначим, как М1 и М2

Через центр сферы точку О в плоскости главного меридиана проведем прямую, перпендикулярную линии главного меридиана. Эта прямая носит название ПОЛЯРНАЯ ОСЬ .

Полярная ось пересечет поверхность сферы в двух точках, которые называются ПОЛЮСАМИ СФЕРЫ. Обозначим эти точки, как Р1 и Р2.

Определение координат точки в пространстве

Теперь рассмотрим процесс определения координат точки в пространстве, а так же дадим наименования этим координатам. Для полноты картины, при определении положения точки, укажем основные направления, от которых производится отсчет координат, а так же положительное направление при отсчете.

1. Задаем положение в пространстве точки отсчета (или точки наблюдения). Обозначим эту точку буквой О.

2. Строим сферу, радиус которой равен длине радиус-вектора точки А. (Радиус-вектор точки А – это расстояние между точками О и А). Центр сферы располагается в точке отсчета О.


3. Задаем положение в пространстве плоскости ЭКВАТОРА, а соответственно плоскости ГЛАВНОГО МЕРИДИАНА. Следует напомнить, что эти плоскости взаимно перпендикулярны и являются центральными.

4. Пересечение этих плоскостей с поверхностью сферы определяет нам положение круга экватора, круга главного меридиана, а так же направление линии главного меридиана и полярной оси.

5. Определяем положение полюсов полярной оси и полюсов линии главного меридиана. (Полюса полярной оси – точки пересечение полярной оси с поверхностью сферы. Полюса линии главного меридиана – это точки пересечения линии главного меридиана с поверхностью сферы).


6. Через точку А и полярную ось строим плоскость, которую назовем плоскостью меридиана точки А. При пересечении этой плоскости с поверхностью сферы получится большой круг, который мы назовем МЕРИДИАНОМ точки А.

7. Меридиан точки А пересечет круг ЭКВАТОРА в некоторой точке, которую мы обозначим, как Е1

8. Положение точки Е1 на экваториальном круге определяется длиной дуги, заключенной между точками М1 и Е1. Отсчет ведется ПРОТИВ часовой стрелки. Дуга экваториального круга, заключенная между точками М1 и Е1 называется ДОЛГОТОЙ точки А. Долгота обозначается буквой .

Подведем промежуточный итог. На данный момент нам известны ДВЕ из ТРЕХ координат, описывающих положение точки А в пространстве – это радиус-вектор (r) и долгота (). Теперь мы будем определять третью координату. Эта координата определяется положением точки А на ее меридиане. Но вот положение начальной точки, от которой происходит отсчет, однозначно не определено: мы можем начинать отсчет как от полюса сферы (точка Р1), так и от точки Е1, то есть от точки пересечения линий меридиана точки А и экватора (или другими словами – от линии экватора).


В первом случае, положение точки А на меридиане называется ПОЛЯРНЫМ РАССТОЯНИЕМ (обозначается как р ) и определяется длиной дуги, заключенной между точкой Р1 (или точкой полюса сферы) и точкой А. Отсчет ведется вдоль линии меридиана от точки Р1 к точке А.

Во втором случае, когда отсчет ведется от линии экватора, положение точки А на линии меридиана называется ШИРОТОЙ (обозначается как  и определяется длиной дуги, заключенной между точкой Е1 и точкой А.

Теперь мы можем окончательно сказать, что положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги полярного расстояния (р)

В этом случае координаты точки А запишутся следующим образом: А(r, , p)

Если пользоваться иной системой отсчета, то положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги широты ()

В этом случае координаты точки А запишутся следующим образом: А(r, , )

Способы измерения дуг

Возникает вопрос – как же нам измерить эти дуги? Самый простой и естественный способ – это провести непосредственное измерение длин дуг гибкой линейкой, и это возможно, если размеры сферы сравнимы с размерами человека. Но как поступить, если это условие не выполнимо?

В этом случае мы прибегнем к измерению ОТНОСИТЕЛЬНОЙ длины дуги. За эталон же мы примем длину окружности, частью которой является интересующая нас дуга. Как это можно сделать?

В пространстве, в которой положение точки может быть определено как её проекции на фиксированные прямые, пересекающиеся в одной точке, называемой началом координат. Эти проекции называются координатами точки, а прямые - осями координат.

В общем случае на плоскости декартова система координат (аффинная система координат) задаётся точкой О (началом координат) и упорядоченной парой приложенных к ней не лежащих на одной прямой векторов е 1 и е 2 (базисных векторов). Прямые, проходящие через начало координат в направлении базисных векторов, называют осями координат данной декартовой системы координат. Первая, определяемая вектором е 1 , называется осью абсцисс (или осью Ох), вторая - осью ординат (или осью Оу). Сама декартова система координат обозначается Ое 1 е 2 или Оху. Декартовыми координатами точки М (рисунок 1) в декартовой системе координат Oe 1 е 2 называется упорядоченная пара чисел (х, у), которые являются коэффициентами разложения вектора ОМ по базису {е 1 , е 2 }, то есть х и у таковы, что ОМ = хе 1 + уе 2 . Число х, -∞ < x < ∞, называется абсциссой, чис-ло у, - ∞ < у < ∞, - ординатой точки М. Если (x, у) - координаты точки М, то пишут М(х, у).

Если на плоскости введены две декартовы системы координат Oe 1 e 2 и 0’е’ 1 е’ 2 так, что векторы базиса {е’ 1 , е’ 2 } выражены через векторы базиса {e 1 ,е 2 } формулами

e’ 1 = a 11 e 1 + a 12 е 2 , е’ 2 = а 21 e 1 + a 22 e 2

и точка О’ имеет в декартовой системе координат Оe 1 e 2 координаты (х 0 , у 0), то координаты (х, у) точки М в декартовой системе координат Оe 1 e2 и координаты (х’, у’) той же точки в декартовой системе координат О’е 1 е’ 2 связаны соотношениями

х = а 11 х’ + а 21 у’ + х 0 , у = а 12 х’+ а 22 у’+ у 0 .

Декартову систему координат называют прямоугольной, если базис {е 1 , е 2 } ортонормированный, то есть векторы е 1 и е 2 взаимно перпендикулярны и имеют длины, равные единице (векторы е 1 и е 2 называют в этом случае ортами). В прямоугольной декартовой системе координат координаты х и у точки М суть величины ортогональных проекций точки М на оси Ох и Оу соответственно. В прямоугольной декартовой системе координат Оху расстояние между точками М 1 (х 1 , у 1) и М 2 (х 2 , у 2) равно √(х 2 -х 1) 2 + (y 2 -y 1) 2

Формулы перехода от одной прямоугольной декартовой системы координат Оху к другой прямоугольной декартовой системе координат О’х’у’, начало которой О’ декартовой системы координат Оху есть О’(х0, у0), имеют вид

х = х’cosα - у’sinα + х 0 , у = х’sin α + у’cosα + у 0

х = х’cosα + у’sinα + х 0 , у = х’sinα - у’cosα + у 0 .

В первом случае система О’х’у’ образуется поворотом базисных векторов е 1 ; е 2 на угол α и последующим переносом начала координат О в точку О’ (рисунок 2),

а во втором случае - поворотом базисных векторов е 1 , е 2 на угол α, последующим отражением оси, содержащей вектор е 2 относительно прямой, несущей вектор е 1 , и переносом начала координат О в точку О’ (рисунок 3).

Иногда используются косоугольные декартовы системы координат, отличающиеся от прямоугольной тем, что угол между единичными базисными векторами не является прямым.

Аналогично определяется общая декартова система координат (аффинная система координат) в пространстве: задаётся точка О - начало координат и упорядоченная тройка приложенных к ней не лежащих в одной плоскости векторов е 1 , е 2 , е 3 (базисных векторов). Как и в случае плоскости, определяются оси координат - ось абсцисс (ось Ох), ось ординат (ось Оу) и ось аппликат (ось Оz) (рисунок 4).

Декартова система координат в пространстве обозначается Oe 1 е 2 е 3 (или Oxyz). Плоскости, проходящие через пары осей координат, называются координатными плоскостями. Декартова система координат в пространстве называется правой, если поворот от оси Ох к оси Оу совершается в направлении, противоположном движению часовой стрелки, если смотреть на плоскость Оху из какой-нибудь точки положительной полуоси Оz, в противоположном случае декартова система координат называется левой. Если базисные векторы е 1 , е 2 , е 3 имеют длины, равные единице, и попарно перпендикулярны, то декартова система координат называется прямоугольной. Положение одной прямоугольной декартовой системы координат в пространстве относительно другой прямоугольной декартовой системы координат с той же ориентацией определяется тремя эйлеровыми углами.

Декартова система координат названа по имени Р. Декарта, хотя в его сочинении «Геометрия» (1637) рассматривалась косоугольная система координат, в которой координаты точек могли быть только положительными. В издании 1659-61 годов к «Геометрии» приложена работа голландского математика И. Гудде, в которой впервые допускаются как положительные, так и отрицательные значения координат. Пространственную декартову систему координат ввёл французский математик Ф. Лаир (1679). В начале18 века установились обозначения х, у, z для декартовых координат.

Прямоугольная (другие названия — плоская, двухмерная) система координат, названная по имени французского ученого Декарта (1596—1650) «декартовой системой координат на плоскости», образуется пересечением на плоскости под прямым углом (перпендикулярно) двух числовых осей так, что положительная полуось одной направлена вправо (ось x, или ось абсцисс), а второй — вверх (ось y, или ось ординат).

Точка пересечения осей совпадает с точкой 0 каждой из них и называется началом координат.

Для каждой из осей выбирается произвольный масштаб (единичный отрезок длины). Каждой точке плоскости соответствует одна пара чисел, названная координатами этой точки на плоскости. И наоборот, любой упорядоченной паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Первая координата точки называется абсциссой этой точки, а вторая координата — ординатой.

Вся плоскость координат делится на 4 квадранта (четверти). Квадранты расположены от первого до четвертого против часовой стрелки (см. рис.).

Чтобы определить координаты точки, нужно найти ее расстояние до оси абсцисс и оси ординат. Так как расстояние (кратчайшее) определяется по перпендикуляру, то из точки опускаются два перпендикуляра (вспомогательные линии на плоскости координат) на оси так, что точка их пересечения — это и есть место заданной точки в плоскости координат. Точки пересечения перпендикуляров с осями называются проекциями точки на оси координат.

Первый квадрант ограничен положительными полуосями абсцисс и ординат. Следовательно, координаты точек в этой четверти плоскости будут положительными
(знаки « + » и

Например, точка M (2; 4) на рисунке вверху.

Второй квадрант ограничен отрицательной полуосью абсцисс и положительной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут отрицательными (знак «-»), а по оси ординат — положительными (знак « + »).

Например, точка C (-4; 1) на рисунке выше.

Третий квадрант ограничен отрицательной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс и оси ординат будут отрицательными (знаки «-» и «-»).

Например, точка D (-6; -2) на рисунке выше.

Четвертый квадрант ограничен положительной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут положительными (знак «+»). а по оси ординат - отрицательными (знак «-»).

Например, точка R (3; -3) на рисунке выше.

Построение точки по ее заданным координатам

    первую координату точки найдем на оси абсцисс и проведем через нее вспомогательную линию — перпендикуляр;

    вторую координату точки найдем на оси ординат и проведем через нее вспомогательную линию - перпендикуляр;

    точка пересечения двух перпендикуляров (вспомогательных линий) и будет соответствовать точке с заданными координатами.

Включайся в дискуссию
Читайте также
Что может означать увиденное во сне застолье?
Пукать сонник что значит Сонник пуканье чужое
Значение сна: снится разбить посуду Сонник треснутая посуда