Подпишись и читай
самые интересные
статьи первым!

Правило ленца возникающий в замкнутом контуре. Правило ленца для определения направления индукционного тока. Смотреть что такое "Правило Ленца" в других словарях

В 1834 году русский академик Э. Х. Ленц, известный своими многочисленными исследованиями в области электромагнитных явлений, дал универсальное правило для определения направления индуктированной электродвижущей силы (ЭДС) в проводнике. Это правило, известное как правило Ленца, может быть сформулировано так:

Направление индуктированной ЭДС всегда таково, что вызванный ею ток и его имеют такое направление, что стремятся препятствовать причине, порождающей эту индуктированную ЭДС.

Справедливость формулировки правила Ленца подтверждается следующими опытами:

Рисунок 1. Противодействие проводника с индуктированным током своему движению

1. Если расположить так, как показано на рисунке 1, то при движении вниз проводник будет пересекать это магнитное поле. Тогда в проводнике индуктируется ЭДС, направление которой можно определить по . В нашем случае направление индуктированной ЭДС, а стало быть и тока будет «к нам». Посмотрим теперь, как будет вести себя наш проводник с током в магнитном поле. Из предыдущих статей нам известно, что проводник с током из магнитного поля будет выталкиваться. Направление выталкивания определяется по правилу левой руки. В нашем случае сила выталкивания направлена вверх. Таким образом, индуктированный ток, взаимодействуя с магнитным полем, мешает движению проводника, то есть противодействует причине, которая его вызвала.

2. Для опыта соберем цепь, показанную на рисунке 2. Опуская в катушку (северным полюсом вниз), заметим отклонение стрелки гальванометра. Опыт показывает, что направление индуктированного тока в катушке будет такое, как показано стрелками на рисунке 2, а . Пусть ему соответствует отклонение стрелки влево от среднего нулевого положения. Следовательно, катушка как бы превратилась в и указанное направление тока создает наверху ее северный полюс, а внизу - южный. Так как одноименные полюса магнита и соленоида будут отталкиваться, то индуктированный ток в катушке будет мешать движению постоянного магнита, то есть будет противодействовать причине, которая его вызвала.

Рисунок 2. Противодействие соленоида движению магнита:
а - вниз, б - вверх

Если мы будем вынимать постоянный магнит из катушки, то стрелка гальванометра отклонится вправо (рисунок 2, б ). Этому отклонению стрелки гальванометра, как показывает опыт, соответствует направление индуктированного тока, показанное стрелками на рисунке 2, б , и противоположное направлению тока на рисунке 2, а .

Определяя полюса катушки по «правилу буравчика», найдем, что южный полюс будет теперь наверху катушки, а северный внизу. Разноименные полюса магнита и соленоида, притягиваясь, будут тормозить движение магнита. Значит, индуктированный ток опять будет противодействовать причине, которая его вызвала.

Рисунок 3. Возникновение индуктированного тока II :
а - в момент замыкания цепи I , б - в момент размыкания цепи

3. Замыкая цепь I (рисунок 3, а ), пропустим ток по проводнику АБ . Направление тока показано на рисунке стрелками. Магнитное поле проводника АБ , созданное появившимся током, распространяясь во все стороны, будет пересекать проводник ВГ , и в цепи II возникает индуктированная ЭДС. Поскольку цепь II замкнута на гальванометр, в ней появится ток. Гальванометр в этом случае включен также, как и в предыдущем опыте.

Стрелка гальванометра, отклонившись влево, покажет, что ток через прибор идет сверху вниз. Сравнивая направление токов в проводниках АБ и ВГ, мы видим, что токи их направлены в разные стороны.

Как мы уже знаем, проводники, токи в которых направлены в разные стороны, один от другого. Поэтому проводник ВГ с индуктированным током будет стремиться оттолкнуться от проводника АБ (так же, как и проводник АБ от ВГ ), устранить влияние поля проводника АБ и тем самым препятствовать причине, вызвавшей индуктированный ток.

Индуктированный ток в цепи II будет проходить непродолжительное время. Как только проводника АБ установится, прекратится пересечение проводника ВГ магнитным полем проводника АБ , ток в цепи II пропадет.

При размыкании цепи I исчезающий ток вызовет уменьшение магнитного поля, индукционные линии которого, пересекая проводник ВГ , создадут в нем индуктированный ток того же направления, что и в проводнике АБ (рисунок 3, б ).

Нам известно, что проводники, в которых ток идет в одном направлении, один к другому. Поэтому проводник ВГ будет стремиться протянуться к проводнику АБ , чтобы поддержать его убывающее магнитное поле.

4. Для следующего примера возьмем катушку, имеющую круглый сердечник, набранный из нарубленной стальной проволоки, на который свободно надето легкое алюминиевое кольцо (рисунок 4). В момент замыкания цепи по обмотке катушки начинает проходить , создающий магнитное поле, индукционные линии которого, пересекая алюминиевое кольцо, индуктируют в нем ток. В момент включения катушки в алюминиевом кольце возникает индуктированный ток, направленный обратно току в витках катушки. Проводники имеющие разное направление индукционного тока отталкиваются. Поэтому в момент включения катушки алюминиевое кольцо подскакивает вверх.

Нам теперь известно, что при всяком изменении во времени магнитного потока, пронизывающего контур, в нем появляется индуктированная ЭДС, определяемая равенством:

Выражение в данной формуле представляет собою среднюю скорость изменения магнитного потока по времени. Чем меньше промежуток времени Δt , тем меньше вышеуказанная ЭДС отличается от ее действительного значения в данный момент времени. Знак минус, стоящий перед выражением , показывает направление индуктированной ЭДС, то есть учитывает правило Ленца.

При увеличении магнитного потока выражение будет положительным, а ЭДС - отрицательной. В этом и заключается правило Ленца: ЭДС и созданный ею ток противодействуют причине, которая их вызвала .

При равномерном изменении во времени магнитного потока выражение будет постоянно. Тогда абсолютное значение ЭДС в проводнике будет равно:

Размерность магнитного потока будет:

[Ф] = [e × t ] = В × сек или вебер.

Если мы имеем не один проводник, а катушку, состоящую из w витков, то величина индуктированной ЭДС будет:

Произведение числа витков катушки на сцепленный с ними магнитный поток называется потокосцеплением катушки и обозначается буквой ψ. Поэтому закон можно записать и в другой форме:

На данном уроке, тема которого: «Правило Ленца. Закон электромагнитной индукции», мы узнаем общее правило, позволяющее определить направление индукционного тока в контуре, установленное в 1833 г. Э.X. Ленцем. Также рассмотрим опыт с алюминиевыми кольцами, наглядно демонстрирующий это правило, и сформулируем закон электромагнитной индукции

Приближением или удалением магнита от сплошного кольца мы меняем магнитный поток, который пронизывает площадь кольца. Согласно теории явления электромагнитной индукции, в кольце должен возникнуть индукционный электрический ток. Из опытов Ампера известно, что там, где проходит ток, возникает магнитное поле. Следовательно, замкнутое кольцо начинает вести себя как магнит. То есть происходит взаимодействие двух магнитов (постоянный магнит, который мы двигаем, и замкнутый контур с током).

Так как система не реагировала на приближение магнита к кольцу с разрезом, то можно сделать вывод, что индукционный ток в незамкнутом контуре не возникает.

Причины отталкивания или притягивания кольца к магниту

1. При приближении магнита

При приближении полюса магнита кольцо отталкивается от него. То есть оно ведет себя как магнит, у которого с нашей стороны такой же полюс, как у приближающегося магнита. Если мы приближаем северный полюс магнита, то вектор магнитной индукции кольца с индукционным током направлен в противоположную сторону относительно вектора магнитной индукции северного полюса магнита (см. Рис. 2).

Рис. 2. Приближение магнита к кольцу

2. При удалении магнита от кольца

При удалении магнита кольцо тянется за ним. Следовательно, со стороны удаляющегося магнита у кольца образовывается противоположный полюс. Вектор магнитной индукции кольца с током направлен в ту же сторону, что и вектор магнитной индукции удаляющегося магнита (см. Рис. 3).

Рис. 3. Удаление магнита от кольца

Из данного опыта можно сделать вывод, что при движении магнита кольцо ведет себя также подобно магниту, полярность которого зависит от того, увеличивается или уменьшается магнитный поток, пронизывающий площадь кольца. Если поток возрастает, то векторы магнитной индукции кольца и магнита противоположны по направлению. Если магнитный поток сквозь кольцо уменьшается со временем, то вектор индукции магнитного поля кольца совпадает по направлению с вектором индукции магнита.

Направление индукционного тока в кольце можно определить по правилу правой руки. Если направить большой палец правой руки по направлению вектора магнитной индукции, то четыре согнутых пальца укажут направление тока в кольце (см. Рис. 4).

Рис. 4. Правило правой руки

При изменении магнитного потока, пронизывающего контур, в контуре возникает индукционный ток такого направления, чтобы своим магнитным потоком компенсировать изменение внешнего магнитного потока.

Если внешний магнитный поток возрастает, то индукционный ток своим магнитным полем стремится замедлить это возрастание. Если магнитный поток убывает, то индукционный ток своим магнитным полем стремится замедлить это убывание.

Эта особенность электромагнитной индукции выражается знаком «минус» в формуле ЭДС индукции.

Закон электромагнитной индукции

При изменении внешнего магнитного потока, пронизывающего контур, в контуре возникает индукционный ток. При этом значение электродвижущей силы численно равно скорости изменения магнитного потока, взятой со знаком «-».

Правило Ленца является следствием закона сохранения энергии в электромагнитных явлениях.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.

Домашнее задание

  1. Вопросы в конце параграфа 10 (стр. 33) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Как формулируется закон электромагнитной индукции?
  3. Почему в формуле для закона электромагнитной индукции стоит знак «-»?
  1. Интернет-портал Festival.1september.ru ().
  2. Интернет-портал Physics.kgsu.ru ().
  3. Интернет-портал Youtube.com ().

Всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Эффектной демонстрацией правила Ленца является опыт Элиу Томсона .

Энциклопедичный YouTube

    1 / 3

    Правило Ленца от bezbotvy

    Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

    Правило Ленца. Физика

    Субтитры

Физическая суть правила

E i n d = − d Φ d t {\displaystyle {\mathcal {E}}^{ind}=-{\frac {d\Phi }{dt}}}

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменением величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Применение правила Ленца

1. показать направление вектора В внешнего магнитного поля; 2. определить увеличивается или уменьшается магнитный поток через контур; 3. показать направление вектора Вi магнитного поля индукционного тока (при уменьшении магнитного потока вектора В внешнего м.поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно); 4. по правилу буравчика определить направление индукционного тока в контуре.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Эл. ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции. Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему "-" ? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Где R - сопротивление проводника.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией. Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результате Л1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Ферромагнетики - вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критическойтемпературы (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик - такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3 d -металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er

Магнитный гистерезис - явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках - Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Колебательный контур - осциллятор, представляющий собой электрическую цепь, содержащую соединённыекатушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды.

Свойства электромагнитных волн: -распространяются не только в веществе, но и в вакууме; - распространяются в вакууме со скоростью света (С = 300 000 км/c); - это поперечные волны; - это бегущие волны (переносят энергию).

Источником электромагнитных волн являются ускоренно движущиеся электрические заряды. Колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Правило Ленца определяет направление индукционного тока, возникающего в результате электромагнитной индукции

Анимация

Описание

"Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нем возбуждается гальванический ток такого направления, которое вызывало бы движение покоящегося провода в направлении, прямо противоположном направлению движения, навязанного здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или прямо противоположном". Профессор петербургского университета Э.Х.Ленц, 1833 год.

Правило Ленца основано на обобщении опытов по электромагнитной индукции .

В сжатой форме правило Ленца можно сформулировать так:

возникающий в замкнутом проводнике индукционный ток имеет такое направление, чтобы препятствовать изменению потока магнитной индукции, которое его вызывает .

То есть индукционный ток создает через площадь, ограниченную контуром собственный поток магнитной индукции, компенсирующий изменение потока магнитной индукции, которое его вызывает:

dФ = (В , d S ) Ю dФ = B Ч dS Ч cos a ,

где a - угол между вектором магнитной индукции внешнего поля и нормалью к плоскости витков соленоида.

Рассмотрим некоторые примеры.

1. Возьмем соленоид (катушку) C , замкнутый через гальванометр G (рис.1).

Возникновение индукционного тока в соленоиде при приближении у нему постоянного магнита

Рис. 1

Будем приближать к одному из его концов постоянный магнит, например, северным полюсом. В соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Направлен индукционный ток против часовой стрелки, если смотреть на соленоид со стороны магнита.

При приближении магнита к соленоиду поток вектора магнитной индукции, пронизывающий витки соленоида, возрастает, так как увеличивается магнитная индукция поля магнита. Магнитное поле индукционного тока в соленоиде направлено из соленоида наружу (правило буравчика), то есть компенсирует нарастание поля магнита. Соответствует правилу Ленца.

2. Возьмем соленоид C , замкнутый через гальванометр G . Будем удалять от одного из его концов постоянный магнит (рис. 2).

Возникновение индукционного тока в соленоиде при удалении от него постоянного магнита

Рис. 2.

При удалении магнита от соленоида поток вектора магнитной индукции, пронизывающий витки соленоида, убывает, так как уменьшается магнитная индукция поля магнита. Магнитное поле индукционного тока в соленоиде направлено внутрь соленоида (правило буравчика), то есть компенсирует убывание поля магнита. Соответствует правилу Ленца.

Очевидно, что результат опытов не изменится, если магнит будет неподвижен, а соленоид перемещаться.

Анализируя результаты этих двух опытов, можно сделать еще один вывод: при приближении северного полюса магнита к соленоиду индукционный ток создает магнитное поле, индукция которого направлена навстречу индукции магнитного поля магнита, и, следовательно, магнит и соленоид отталкиваются, то есть между ними возникает сила противодействующая движению магнита, которое вызывает возникновение индукционного тока. При удалении магнита магнит и соленоид притягиваются, то есть снова между ними возникает сила противодействующая движению магнита.

Правило Ленца является следствием закона сохранения энергии. Действительно, индукционные токи, как всякие другие электрические токи, совершают некоторую работу. Значит при движении замкнутого проводника (соленоида) в магнитном поле должна быть произведена дополнительная работа внешних сил. Эта и есть та работа, которая возникает за счет сил препятствующих движению магнита.

Изменение потока через витки соленоида C наблюдается и при рассмотрении относительного движения магнита южным полюсом к соленоиду C , замены магнита соленоидом или витком с током, замыкания и размыкания цепи такого соленоида (или витка), а также взаимные повороты соленоида C и элемента, создающего магнитное поле.

Временные характеристики

Время инициации (log to от -10 до 2);

Время существования (log tc от 15 до 15);

Ключевые слова

  • магнитная индукция
  • электромагнитная индукция
  • магнитный поток
  • поток вектора магнитной индукции
  • замкнутый контур
  • замкнутый проводник
  • магнит
  • магнитное поле
  • электрический ток
  • индукционный ток
  • соленоид
  • виток
  • правило Ленца
  • закон Ленца
  • катушка

Разделы естественных наук:

Включайся в дискуссию
Читайте также
Сочные котлеты из свинины с рисом
Готовим макароны в мультиварке рецепты
Овощной кугель - безумно вкусно, быстро и легко!