Подпишись и читай
самые интересные
статьи первым!

Современные проблемы науки и образования. Управление качеством Способы оценки технологических процессов

1

Предложена методика оценки точности и стабильности технологических процессов, основанная на проверке однородности двух независимых выборок (извлеченных из одной и той же генеральной совокупности), а именно сравнении их функций распределения. При реализации данного метода одна выборка принимается в качестве базовой, когда качество выпускаемой продукции соответствует требованиям нормативной и технической документации, а вторая выборка является исследуемой и необходима для последующего анализа качества процесса по какому-либо показателю. В качестве критерия, позволяющего проверить однородность двух независимых выборок, предлагается использовать критерий Вилкоксона. В рассматриваемом примере проведен анализ стабильности процесса производства бетона путем сравнения двух различных выборок, полученных в результате сбора и анализа статистической информации о качестве продукции. Предлагаемый метод позволяет получить достоверную информацию о качестве продукции и стабильности технологического процесса без использования контрольных карт и гистограмм.

контроль качества

строительная продукция

методы математической статистики

1. Гмурман В.Е. Теория вероятностей и математическая статистика: учеб. пособие для вузов / В. Е. Гмурман. – Изд. 11-е – М. : Высш. шк., 2005. – 479 с.

2. Козицына А.В. Инструменты качества как эффективный способ повышения уровня качества продукции [Текст] / А.В. Козицына, Л.В. Макарова, Р.В. Тарасов // Современные научные исследования и инновации. – Апрель 2014. - № 4 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/04/33360 (дата обращения: 09.04.2014).

3. Логанина В.И. Разработка системы менеджмента качества на предприятиях [Текст]: учебное пособие / В.И. Логанина, О.В. Карпова, Р.В. Тарасов. - М: КДУ, 2008. -148 с.

4. Макарова Л.В. Методический подход к обеспечению стабильности и качества технологических процессов [Текст] / Л.В. Макарова, Р.В. Тарасов, Д.В. Тарасов, О.Ф. Петрина // Научно-теоретический журнал Вестник БГТУ им. В.Г. Шухова. - № 1. - 2015. - С. 120–124.

5. Орлов А.И. Математика случая: Вероятность и статистика – основные факты: Учебное пособие. – М.: МЗ-Пресс, 2004. – 110 с. – URL: http://www.aup.ru/books/m155/

В современных условиях конкурентной борьбы производитель должен обеспечивать высокое качество продукции при доступной цене. Достижение этих целей невозможно без создания оптимальных производственных условий, направленных на совершенствование технологических процессов и системы контроля на предприятии . Система контроля на предприятиях строительной индустрии, как правило, включает в себя три составляющие: входной контроль, операционный контроль и приемочный контроль. Совершенствование данных методов контроля позволяет значительно сократить издержки производства при постоянном повышении качества продукции . Особый интерес в данных условиях вызывает анализ точности и стабильности технологических процессов, который сегодня не мыслим без использования статистических методов.

Статистические методы хорошо зарекомендовали себя как инструменты качества и применяются в случаях, когда по результатам ограниченного числа наблюдений требуется установить причины улучшения или ухудшения точности и стабильности технологических процессов или работы технологического оборудования. Под точностью технологического процесса понимают свойство технологического процесса, обусловливающее близость действительных и номинальных значений параметров производимой продукции. Под стабильностью технологического процесса понимают свойство технологического процесса, обусловливающее постоянство распределений вероятностей для его параметров в течение некоторого интервала времени без вмешательства извне . В свою очередь обеспечение стабильности и точности производственного процесса оказывает влияние на качество готовой продукции .

Системы управления предприятием или процессами в области качества требуют применения статистических методов:

    Методов анализа оценки качества продукции;

    Методов регулирования технологических процессов;

    Методов приемочного контроля качества и т.д.

Применение данных методов позволяет:

    Выявлять случайные и систематические показатели, способные привести к появлению дефектов;

    Проверять соблюдения требований ГОСТов, СНИПов и нормативных документов;

    Выявлять потенциальные резервы производства;

    Определить технические нормы и допуски выпускаемой продукции;

    Правильно осуществить выбор технологического оборудования и план проведения испытаний.

Существует несколько «классических» задач.

1. Выявить соответствие показателей качества выпускаемой продукции и эталонного изделия. Данная задача сводится к анализу математических ожиданий, и заключается в проверке нулевой гипотезы: , где
Х - случайная величина, значения которой определяют результат испытаний (наблюдения);

a - значение эталонного изделия.

2. Выявить отличие рассеивания показателя качества выпускаемой продукции от эталонного изделия. Данная задача сводится к сравнению дисперсий и заключается в проверке нулевой гипотезы: .

В данной работе для анализа стабильности технологического процесса предлагается проверить однородность двух независимых выборок, а именно осуществить сравнение их функций распределения и проверку нулевой гипотезы: .

Постановка задачи

В заводских лабораториях, отделах качества предприятий, как правило, для оценки стабильности технологического процесса прибегают к построению гистограмм для исследуемой случайной величины, составлению контрольных карт за отчетный период (например, неделя или месяц) и последующему их анализу.

Предлагаемая методика может быть сведена к проверке однородности двух независимых выборок (извлеченных из одной и той же генеральной совокупности), а именно к сравнению их функций распределения.

Одну выборку в данном случае можно считать базовой, когда качество выпускаемой продукции соответствовало всем техническим и нормативным требованиям (причем числовые характеристики данной выборки могут быть определены), а вторая выборка является исследуемой и призвана выявить улучшение (ухудшение, стабильность) технологического процесса по некоторому показателю.

Рассмотрим пример реализации предлагаемой методики по оценке стабильности технологического процесса производства бетона М150. Анализ проводился на основе данных прочности при сжатии () контрольных образцов в возрасте твердения 28 суток (таблица).

Независимые выборки из общей генеральной совокупности

Порядковый номер

Базовая выборка
(случайная величина )

Исследуемая выборка
(случайная величина )

Объем выборки

В среде Statistica 10 для наглядности результатов испытаний были построены гистограммы распределений базовой и исследуемой выборок с наложенными на них плотностями нормального распределения и получены значения статистик (чем меньше величины статистики Колмогорова-Смирнова, тем ближе распределение случайной величины к нормальному).

Гистограммы распределений базовой и исследуемой выборок

В качестве критерия для проверки однородности двух независимых выборок и воспользуемся критерием Вилкоксона, несомненным достоинством которого является возможность применения к случайным величинам с неизвестным законом распределения (обязательно лишь требование непрерывности случайных величин).

Данный критерий при заданном уровне значимости состоит в проверке нулевой гипотезы об однородности двух независимых выборок объемов и () при конкурирующей гипотезе . Ход проверка нулевой гипотезы несколько изменяется в зависимости от объема выборки и условно делится на два случая :

1) объем обеих выборок не превосходит 25;

2) объем хотя бы одной из выборок превосходит 25.

В рассматриваемом примере объем обеих выборок не превосходит 25.

Проверка критерия Вилкоксона

На первом этапе проверки критерия необходимо расположить варианты обеих выборок (таблица) в возрастающем порядке, т.е. в виде одного вариационного ряда:

151, 151, 151, 151, 151, 151, 151, 152, 152, 152, 152, 152, 153,
154, 154, 154, 154, 157, 158, 158, 158, 158, 158, 158, 158, 159, 159,
159, 160, 160, 160, 160, 160, 160, 160, 161, 161, 161, 161
(здесь жирным выделены варианты первой выборки),

и найти в этом ряду наблюдаемое значение критерия - сумму порядковых номеров вариант первой выборки:

Вторым этапом является определение верхней и нижней критических точек при заданном уровне значимости (например, ):

1) нижняя критическая точка находится по таблицам критических точек критерия Вилкоксона :

2) верхняя критическая точка определяется по формуле:

Если или - нулевую гипотезу отвергают. Если - нет оснований отвергнуть нулевую гипотезу.

Из проведенных выше вычислений видно, что

и нет оснований отвергнуть нулевую гипотезу.

Следовательно, эталонная и исследуемая выборки имеют одинаковые функции распределения, и технологический процесс производства бетона М150 стабилен.

Выводы

Предлагаемая методика не требует построения гистограмм и контрольных карт и дает возможность быстро провести анализ точности и стабильности технологических процессов при обеспечении высокой достоверности результатов. Однако следует учитывать тот факт, что если по результатам анализа процесс окажется нестабильным, то требуется исследуемую выборку изучать более детально с целью выявления причин нестабильности процесса и ухудшения качества продукции.

Рецензенты:

Логанина В.И., д.т.н., профессор, зав. кафедрой «Управление качеством и ТСП», ФГБОУ ВПО «Пензенский государственный университет архитектуры и строительства», г. Пенза;

Данилов А.М., д.т.н., профессор кафедры математики и математического моделирования, ФГБОУ ВПО «Пензенский государственный университет архитектуры и строительства», г. Пенза.

Библиографическая ссылка

Тарасов Д.В., Тарасов Р.В., Макарова Л.В., Слепова И.Э. МЕТОДИКА ОЦЕНКИ СТАБИЛЬНОСТИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ПРИ ПРОИЗВОДСТВЕ ПРОДУКЦИИ СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ // Современные проблемы науки и образования. – 2015. – № 1-1.;
URL: http://science-education.ru/ru/article/view?id=17674 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Страница 2 из 2

Анализ точности технологического процесса позволяет для каждой технологической операции выявить причины возникновения производственных погрешностей, обосновать границы технологического допуска, правильно настроить технологический процесс и выбрать экономический метод достижения требуемой точности.

Для изучения точности технологических процессов и определения закономерностей производственных погрешностей при изготовлении отдельных деталей и сборки, применяются аналитический и статистический методы анализа.

Аналитический метод предусматривает изучение закономерностей процессов, всей совокупности факторов, влияющих на точность изготовления или ремонта изделия, разработку определяющей модели процесса.

Он основан на установлении функциональной зависимости между значениями каждой первичной погрешности и окончательной точностью готового изделия.

В действительности определяющие модели не отражают во всей полноте технологические процессы, потому что невозможно аналитически определить всю совокупность факторов и их влияние на точность выходных параметров процесса.

Поэтому данный метод применим только для оценки влияния отдельных факторов на точность изготовления единичных деталей.
Более широкое применение при оценке точности технологических процессов получил статистический метод.

Этот метод базируется на теории вероятности и математической статистике. Статистический метод основан на получении и обработке большого количества наблюдений, обеспечивающих необходимый объем информации.

Статистический метод применяют для исследования точности технологических процессов в серийном и массовом производствах с использованием кривых распределения, корреляционного и дисперсного анализа, точностных диаграмм.

Производственную погрешность рассматривают как случайную величину. Для изучения точности технологического процесса на генеральной совокупности обрабатываемых деталей извлекают некоторую выборку, которую подробно исследуют. Рассмотрим, как определяются статистические характеристики точности процесса.
Анализировать характеристики начинают с определения среднего значения и среднего квадратичного отклонения. Для характеристики случайной величины строят кривые распределения, измеряя в партии изделий параметр, точность которого нужно определить.

Так, например, при обработке деталей на металлорежущем станке измеряют диаметр партии деталей. Результаты измерений записывают в таблицу в порядке их получения, объединяют в интервалы и подсчитывают абсолютную п или относительную n/N частоту повторения замеров в каждом интервале.

Число деталей N берут не менее 100, а число интервалов не менее 7 (желательно 9-12). На основании анализа полученных данных строят кривые распределения в координатах f(x) и х.


Для этого на оси абсцисс откладывают значения размеров обрабатываемых деталей, объединенных в интервал, а по оси ординат- абсолютную (относительную) частоту. Точки пересечения соединяют и получают ломаную линию, которая и является эмпирической кривой плотности распределения.

При увеличении числа изделий в партии и числа интервалов кривая плотности распределения приближается к теоретической.
Разность между наибольшим и наименьшим действительными значениями диаметра изделий данной партии определяет поле рассеяния д. Если поле рассеяния A=dmax - dmm больше допустимого значения 6, установленного техническими условиями, то будет иметь место брак изделий.

Представление о точности исследуемой партии может быть получено на примере, где видно, что все детали партии лежат в пределах допустимых границ. Качество параметров может быть оценено по полученным значениям характеристик математического ожидания и рассеяния.

Многочисленными экспериментальными исследованиями установлено, что кривые распределения погрешностей (размеров) деталей при механической обработке на настроенных станках в большинстве случаев подчиняются закону нормального распределения (закону Гаусса).

В процессе механической обработки заготовки, любым технологическим процессом, на точность её изготовления влияет достаточно большое количество различных факторов. Так, например, при обработке деталей на станке участвуют станок, приспособление для установки и закрепления деталей и режущего инструмента, режущий инструмент, сами обрабатываемые детали, настройщик оборудования, окружающая среда и т.д. В силу действия различных производственных факторов непрерывно меняются и показатели конечного результата выбранного технологического процесса.

Поэтому, несмотря на то, что детали изготавливают при помощи одного и того же технологического процесса, при постоянных режимах обработки и в автоматическом режиме, т.е без участия человека, все они отличаются друг от друга и от расчётного «идеального» прототипа. Такое явление называется рассеиванием случайной величины, в частности точности изготовления выходных параметров детали.

Для анализа точности изготовления деталей, выбранным технологическим процессом, применяются различные методы, позволяющие учитывать влияние различных производственных факторов. К таким методам относятся: метод непосредственного наблюдения или метод точечных диаграмм, аналитический и статистический методы.

В производстве наиболее часто применяется метод точечных диаграмм , который позволяет определить влияние закономерно изменяющихся факторов на точность изготовления. Метод требует достаточно большого количества наблюдений и применяется в крупносерийном производстве.

Аналитический метод требует математического описания всех первичных факторов влияющих на погрешность обработки, метод достаточно трудоёмкий и применяется в отдельных случаях.

Статистический метод основан на положениях теории вероятности и математической статистики. Из теории вероятностей известно, что если рассеяние какой либо величины (размера, шероховатостей поверхности, твёрдости материала и т.д.) зависит от совокупного действия многих факторов одного порядка величин, являющихся случайными, независящими или слабо зависящими один о другого, то рассеяние подчиняется закону нормального распределения или закону Гаусса.

Теоретический закон нормального распределения в системе координат, в которой начало совпадает с осью симметрии кривой Рис. З.2 или со средним значением отклонения, выражается формулой

Y = j(х) = е - (3.2)

где - средне квадратичное отклонение случайной величины;

- частота, отвечающая значению х .

Для анализа точности выбранного технологического процесса производят измерение фактических размеров партии деталей и строят кривую распределения.



Разность между минимальным и максимальным фактическими размерами

измеренных деталей разбивают на равные интервалы.

Определяют количество размеровдеталей в каждом Рис.3.2

интервале.

Построение кривой производят в следующей последовательности. По оси абсцисс откладывают поле рассеивания размеров, которое определяется как разность между фактическим максимальным и минимальным размерами Х ф.мах – Х ф.мин. = 6, в выбранном масштабе. Из середины каждого интервала, по оси ординат, откладывают относительную частоту W = m /N , где m– количество размеров деталей попавших в данный интервал, N – общее количество деталей в измеряемой партии. По полученным точкам строят ломанную кривую фактического распределения размеров.Чем больше партия деталей тем плавнее становится ломанная кривая, и по своему виду приближается к кривой закона нормального распределения (кривой Гаусса) Рис.3.3 .На графике обозначения X д min и Х д. max определяют допустимые max и min значения контролируемого размера или границы допуска, величина заданная конструктором. Области А i и Б i соответствуют величине исправимого и неисправимого брака, а величина а i определяет смещение центра группирования размеров относительно середины поля допуска. Кривая нормального распределения симметрична относительно оси, соответствующей абсциссе М(х) или Х СР, среднеарифметическое значение отклонений. Среднеарифметическое значение отклонений называют центром группирования размеров или центром рассеяния случайной величины.



Рис.3.3

Теоретическая кривая нормального рассеяния размеров простирается в обе стороны вдоль оси абсцисс беспредельно, асимптотически приближаясь к этой оси. Для теоретических расчётов предельных отклонений (при использовании закона нормального рассеяния), выражаемые в долях среднеквадратичного отклонения , ограничивают обычно величинами или полем рассеивания 6.

Площадь под кривой закона нормального распределения, находящаяся в

в зоне ограниченной 6, составляет 99,73% от всей площади и только 0,27% выходят за пределы поля рассеивания.

Если всю площадь под кривой нормального распределения принять за 100% или за единицу, то её незаштрихованная площадь будет соответствовать доле отклонений случайной величины, которая укладывается в интервал .

При увеличении интервала рассеивания более площадь под кривой увеличивается незначительно, при уменьшении до площадь под кривой резко

сокращается.

Характер рассеивания размеров наиболее наглядно выявляется путем составления так называемых кривых распределения. Для получения надежной кривой распределения рекомендуется получить не менее 200 – 300 замеров фактических величин данного размера, во многих случаях, однако, практически допустимые результаты могут быть получены при числе замеров около 100.

Количество деталей, подлежащих измерению для определения среднеквадратичного отклонения, зависит от точности, с которой необходимо определить это отклонение.

Из математической статистики известно, что среднеквадратичная ошибка при определении среднеквадратичного значения равна:

где N – количество измерений, а Е – ошибка в долях от .

Для получения с точностью 5%, надо решить уравнение

, откуда N 200.

Для определения среднеквадратичного отклонения с точностью 10%, надо измерить 50 деталей.

Вид кривой фактического распределения зависит от рассматриваемого технологического процесса изготовления, количества деталей подвергаемых измерениям и ряда других факторов.

Разница между предельными размерами деталей данной партии, «поле рассеивания» - характеризует величину случайных погрешностей. Систематическая погрешность, постоянная в пределах партии, на форму кривой распределения влияния не оказывает – она вызывает лишь смещение всей кривой в направлении оси абсцисс.

В случае, если на точность изготовления влияют закономерно изменяющиеся производственные факторы, то кривая нормального распределения будет несимметрична относительно центра группирования. Построение и исследование кривых распределения для различных операций позволяют сделать ряд выводов, относящихся к точности обработки; и в первую очередь дают возможность отделять влияние постоянных систематических ошибок от влияния ошибок случайных.

Далее те же исследования позволяют в ряде случаев предсказывать значение случайных погрешностей, основываясь на обследованной ранее партии деталей. Ряд работ по исследованию кривых распределения размеров деталей показывает

близкое совпадение фактических кривых распределения с кривой нормального распределения, уравнение которой имеет вид:

(3.4)

где х i – текущие координаты кривой,

Х- средняя арифметическая из всех величин,

(3.5)

здесь …m n - число деталей с отклонениями, х 1 ,х 2…. х n

Среднее квадратное отклонение размеров, определяется по формуле

(3.7)

В формулах (3.26 и3.27)

N – общее число измеренных деталей, а

m – число деталей с одинаковым отклонением размеров.


Если фактическое распределение размеров (или отклонений) практически

Рис.3.4

близко подходит к закону нормального распределения, то оно может быть достаточно полно охарактеризовано величиной среднего квадратичного отклонения. Отсюда может быть выведено обязательное неравенство, связывающее величину допуска на данный размер () и величину среднего квадратичного отклонения:.

На Рис.3.4. приведён случай, когда поле допуска равно полю рассеивания размеров, при отсутствии систематической погрешности, вызванной неправильной настройкой станка.

Для получения требуемых размеров детали, в процессе механической обработки, настройка станка производится с расчетом получения центра группирования () в середине поля допуска. На практике возможны различные варианты влияния случайных факторов на характер расположения и величину поля рассеивания относительно поля допуска. В частности, на Рис.3.5 и Рис.3.6 приведены случаи, когда центр группирования совпадает с серединой поля

Рис.3.5 Рис.3.6

допуска, а или . В первом случае все детали соответствуют требованиям точности изготовления. Во втором случае появляется брак, как исправимый А i , так и неисправимый Б i . Для исключения возможности появления брака необходимо изменить технологический процесс обработки, и в частности, поменять режимы обработки или использовать более высокоточное оборудование.

В случае, если настройка станка, на выполнение заданного размера, произведена с погрешностью а i , а величина Рис.3.7 или Рис.3.8, то появляется брак исправимый или неисправимый, или тот и другой одновременно.

Рис.3.7 Рис.3.8

Величина брака зависит как от величины систематической погрешности, так и от выбранного технологического процесса изготовления.

Величина систематической погрешности а i определится по формуле

(3.9)

Величина брака или количество отклонений, выходящих за границы поля допуска определится по формулам.

Площадь А А i = 0,5 где t a = (3.10)

Площадь Б Б i = 0,5 }

Включайся в дискуссию
Читайте также
Модальные глаголы: Can vs
Спряжение глагола Они выспятся какое спряжение
Гузенко, игорь сергеевич Факты и вымысел