Подпишись и читай
самые интересные
статьи первым!

Структурная организация белков. Уровни структурной организации белка Способность белковых молекул сохранять свою структуру

Структура белковой молекулы изучается более 200 лет. Она известна для многих белков. Некоторые из них синтезированы (например, инсулин, РНКаза). Основной структурной и функциональной единицей белковой молекулы являются аминокислоты. Кроме карбоксильных и аминогрупп белки содержат и другие функциональные группы, которые и определяют их свойства. К таким группам относят размещенные в боковых разветвлениях белковой молекулы: карбоксильную группу аспарагиновой кислоты или глутаминовой кислоты, аминогруппы лизина или оксилизина, гуанидиновую группу аргинина, имидазольную группу гистидина, гидроксильную группу серина и треонина, фенольную группу тирозина, сульфгидрильную группу цистеина, дисульфидную группу цистина, тиоэфирную группу метионина, бензельное ядро фенилаланина, алифатические цепи других аминокислот.

Различают четыре уровня структурной организации молекулы белка.

Аминокислоты в молекуле белка соединяются между собой пептидными связями, образуя при этом первичную структуру. Она зависит от качественного состава аминокислот, их количества и последовательности соединения между собой. Первичная структура белка чаще всего определяется по Сенгеру. Исследуемый белок обрабатывают раствором дитрофторбензола (ДНФ), вследствие чего образуется В дальнейшем ДНФ-белок гидролизируется, образуется остаток молекулы белка и ДНФ-аминокислота. ДНФ-аминокислоту выделяют из данной смеси и поддают гидролизу. Продуктами гидролиза являются аминокислота и динитробензол. Остаток молекулы белка вступает в реакцию с новыми порциями ДНФ до тех пор, пока вся молекула не распадется на аминокислоты. На основании количественного изучения аминокислот составляют схему первичной структуры индивидуального белка. Известна первичная структура белков инсулин, миоглобин, гемоглобин, глюкагон и многих других).

По методу Эдмана белок обрабатывают фенилизотиоцианатом. Иногда используют протеолитические ферменты - трипсин, пепсин, химотрипсин, пептидазы и т.д.

Вторичная структура белка. Американские ученые, используя рентгеноструктурный анализ, установили, что белковые полипептидные цепи чаще существуют в виде альфа-спиралей, а иногда бета-структур.

Альфа-спирали сравнивают с где функцию степеней исполняют аминокислотные остатки. В молекулах фибриллярных белков (фиброин шелка) полипептидные цепи практически полностью растянуты (бета-структура) и размещаются в виде шаров, стабилизированных водородными связями.

Альфа-спираль может спонтанно формироваться в синтетических полипептидах (дедерон, нейлон), которые имеют от 10 до 20 тыс. Да. На определенных участках молекулы белков (инсулина, гемоглобина, РНК-азы) нарушается альфа-спиральная конфигурация пептидной цепи, и образуются спиральные структуры другого типа.

Спиралеобразные участки полипептидной цепи белковой молекулы находятся в разных взаимоотношениях, которые и предопределяют третичную (трехмерную) структуру, образуют объем и форму белковой молекулы. Считают, что третичная структура возникает автоматично вследствие взаимодействия аминокислотных радикалов с молекулами растворителя. При этом гидрофобные радикалы «втягиваются» внутрь белковой молекулы, формируя их сухие зоны, а гидрофильные группы ориентируются в сторону растворителя, что обуславливает образование энергетически выгодных конфирмаций молекулы. Этот процесс сопровождается образованием внутримолекулярных связей. Третичная структура белковой молекулы расшифрована для РНК-азы, гемоглобина, лизоцима куриного яйца.

Данный вид структуры белковой молекулы возникает в результате ассоциации нескольких субъединиц в единственную комплексную молекулу. Каждая субъединица имеет первичную, вторичную и третичную структуры.

Курс «Молекулярные основы процессов жизнедеятельности»

УЧЕБНЫЙ ПЛАН КУРСА

№ газеты

Учебный материал

Лекция № 1.Основные виды биополимеров

Лекция № 2. Внутримолекулярные и межмолекулярные взаимодействия в биополимерах

Лекция № 3. Нуклеиновые кислоты
Контрольная работа № 1 (срок выполнения - до 15 ноября 2004 г.)

Лекция № 4 . Механизмы функционирования белков

Лекция № 5. Генетический код
Контрольная работа № 2 (срок выполнения - до 15 декабря 2004 г.)

Лекция № 6. Биосинтез нуклеиновых кислот

Лекция № 7. Предварительные этапы биосинтеза белка

Лекция № 8. Биосинтез белка и его локализация в клетке

Итоговая работа - разработка урока.
Итоговые работы, сопровождаемые справками из учебного заведения (актами о внедрении), должны быть направлены в Педагогический университет не позднее 28 февраля 2005 г.

Лекция № 4. Механизмы функционирования белков

На прошлой лекции мы рассмотрели взаимодействия, определяющие пространственную структуру белковой молекулы. Однако не все группы белка, способные вступать в такие взаимодействия, могут найти себе партнера в пределах белковой молекулы. В водных растворах эти группы обычно вступают во взаимодействия с молекулами растворителя, а заряженные группы – с растворенными в воде ионами солей. В живой клетке белковые молекулы часто образуют слабые связи с молекулами других органических веществ, в том числе и белков.

Поскольку в молекуле белка много групп, способных вступать в нековалентные взаимодействия, такая молекула может связаться с большим числом других молекул или образовать многочисленные связи с одной из молекул. Если количество взаимодействующих групп у двух таких молекул невелико, образуются непрочные комплексы, которые могут легко разрушаться, например, под действием теплового движения молекул. Если же между молекулой белка и другой молекулой образуется достаточно большое число водородных связей и много участков связано электростатическими, вандерваальсовыми и гидрофобными взаимодействиями, то начинает сказываться кооперативный эффект, т.е. прочность комплекса становится намного больше, чем следует из простого суммирования энергии образовавшихся связей.

Это возможно в том случае, если во взаимодействующих молекулах реагирующие группы расположены строго определенным образом: против отрицательно заряженных групп одной молекулы находятся положительно заряженные группы другой и наоборот, группы, образующие водородные связи, сближены и правильно ориентированы, гидрофобные участки обеих молекул находятся друг против друга. Можно сказать, что поверхности взаимодействующих молекул имеют комплементарную структуру. Такие пары молекула белка может образовать лишь с молекулами строго определенных веществ, а это значит, что взаимодействия молекулы белка с другими веществами строго специфичны и определяются его пространственной структурой.

Белок может образовывать комплексы с высокомолекулярными соединениями и формировать надмолекулярные комплексы, являющиеся основой различных клеточных и межклеточных структур. Примерами таких структур являются, например, рибосомы и микротрубочки. Первые представляют собой комплекс специфических рибосомных белков и РНК, а вторые – комплекс многочисленных молекул белка тубулина, плотно примыкающих друг к другу и расположенных по спирали, при этом сами молекулы тубулина являются глобулярными.

За счет взаимодействия между белковыми молекулами образуются волокна таких белков, как актин и коллаген (рис. 1). За счет менее специфичных, но многочисленных гидрофобных взаимодействий происходит связывание белков с мембранами. Несколько десятков молекул белков, образующих разветвленный комплекс с многочисленными молекулами кислых полисахаридов трех разных видов, являются структурной основой прочности хрящевой ткани животных.

Таких примеров можно приводить очень много. Для нас важно, что за счет образования прочных специфических комплексов с различными полимерами белки выполняют структурную функцию, обеспечивая пространственную организацию живых систем. Устойчивость таких структур обусловлена прочностью образующих их комплексов, а прочность комплексов, в свою очередь, – специфическим многоцентровым связыванием их компонентов.

Надо сказать, что образование таких специфических прочных комплексов характерно не только для белков. Например, за счет образования большого числа водородных связей расположенные параллельно молекулы целлюлозы образуют прочные пучки – мицеллы, являющиеся основой клеточной стенки растений. К образованию прочных комплексов способны и некоторые другие полисахариды. Однако для белков характерно гораздо большее многообразие формируемых структур, что является основой клеточной, тканевой и видовой специфичности.

Узнавание белками, расположенными на поверхности клетки, специфических белковых или небелковых компонентов, расположенных на поверхностях других клеток, является основой межклеточного узнавания, приводящего к образованию тканей и органов и лежащего в основе тканевой дифференцировки и развития многоклеточных организмов.

Однако белковые молекулы могут взаимодействовать не только с высокомолекулярными соединениями. Небольшие органические молекулы могут связываться с белковой молекулой с достаточно высокой специфичностью, но такие комплексы менее прочны, т.к. число образующихся слабых взаимодействий намного меньше, чем в случае макромолекул (рис. 2).

При связывании с белками малые молекулы могут деформироваться. Это ослабляет химические связи и облегчает их разрыв и образование новых связей. Кроме того, белок может связывать две и более малые молекулы, сближать их и определенным образом ориентировать друг относительно друга. Это облегчает реакции между связанными молекулами и приводит к их значительному ускорению. Такие белки являются эффективными катализаторами и называются ферментами .

Ферменты – наиболее многочисленная группа белков. Все реакции, протекающие в живых организмах, катализируются ферментами, которых в настоящее время известно несколько тысяч. Даже такие простые организмы, как бактерии, содержат более 2 тыс. различных ферментов. Набор ферментов, имеющийся у данного организма, определяет его биосинтетические возможности. Без участия ферментов биохимические реакции шли бы с ничтожными скоростями, и продукты реакции не могли бы образовываться в нужных количествах.

Ферменты отличаются высокой эффективностью, они ускоряют реакции в миллионы и миллиарды раз. Кроме того, для ферментов характерна высокая специфичность. Как правило, один фермент ускоряет превращение одного определенного вещества в другое, строго определенное, вещество. Благодаря этому в клетке не образуется побочных продуктов реакций, что характерно для большинства химических реакций.

Для многих ферментов характерна регуляция их активности различными факторами, например определенными веществами. Это позволяет клетке не образовывать избыточные количества веществ. Если количество какого-либо вещества превышает необходимый клетке уровень, активность ферментов, участвующих в его синтезе, подавляется, а когда содержание этого вещества в клетке снижается, активность ферментов вновь восстанавливается.

Еще одним свойством многих ферментов является способность сопрягать две химические реакции. При этом одна реакция идет с выделением энергии, а другая – с поглощением. Сопряжение реакций позволяет осуществить вторую реакцию за счет энергии, выделяющейся при протекании первой так, что суммарный процесс остается энергетически выгодным. С помощью таких ферментов живые организмы осуществляют большинство реакций синтеза сложных молекул, в частности полимеров.

При связывании малых молекул с белками может изменяться не только конформация малых молекул, но и конформация белковой молекулы. В некоторых случаях конформационные изменения белка могут быть очень заметными, и он приобретает новые свойства, например может связываться с молекулами других белков и нуклеиновых кислот. Такие белки при появлении определенных веществ вызывают изменения активности ферментов или работы генов – так клетки реагируют на химические сигналы.

Белки, изменяющие свои свойства при связывании гормонов, называются рецепторами . Они расположены обычно на наружной стороне клеточной мембраны и передают сигнал внутрь клетки. Кроме гормонов сигналами могут быть питательные вещества, молекулы, концентрация которых связана с общим состоянием клетки, например АТФ и т.п. Белки, связавшись с сигнальными молекулами, могут приобрести сродство к определенным последовательностям нуклеотидов в ДНК. Такие белки являются репрессорами или активаторами генов.

Изменение конформации белка при связывании низкомолекулярных веществ обычно обратимо, но в некоторых случаях переход белка из одного состояние в другое связан с изменением низкомолекулярного вещества. Чаще всего таким веществом является АТФ. Одна конформация белка переходит в другую после того, как происходит гидролиз АТФ и белок оказывается связанным с АДФ. Дальнейшая диссоциация АДФ и связывание новой молекулы АТФ возвращает белок в исходное состояние.

На таком принципе основана работа двух групп белков. Первая – транспортные АТФазы. Эти белки встроены в мембраны. Они связывают молекулы или ионы с одной стороны мембраны и за счет гидролиза АТФ переносят их на другую сторону. Таким образом в клетку поступают необходимые ей вещества и ненужные – выводятся из клетки. Такой процесс называется активным транспортом . Перенос веществ происходит также между цитоплазмой и клеточными органеллами. В результате каждая часть клетки имеет свой специфический состав и осуществляет свойственные ей процессы. Вторая группа белков, изменяющих конформацию при гидролизе АТФ, – двигательные белки. Эти белки довольно многообразны, но в основе их действия лежат сходные процессы.

Два типа белков образуют два типа комплексов – с АТФ и с АДФ или без нуклеотида. Переход из одного состояния в другое осуществляется после гидролиза АТФ, а обратный переход – после диссоциации АДФ и присоединения АТФ. Сам переход вызывает изменение положения белков друг относительно друга, что и приводит к механическому движению.

Одним из типов двигательных белков являются «шагающие» белки. Такой белок имеет два участка связывания с протяженной белковой структурой, например с микротрубочкой. Один участок прочно связывается в присутствии АТФ, а другой в ее отсутствие. Если АТФ нет, белок прикреплен к микротрубочке вторым участком. Связывание АТФ приводит к тому, что с микротрубочкой связывается на некотором расстоянии и первый участок. Гидролиз АТФ приводит к изменению конформации белка и сближению участков связывания. При этом второй участок подтягивается к первому. Затем, после диссоциации АДФ, первый участок отделяется от микротрубочки, а после присоединения АТФ свяжется снова, но уже продвинувшись на определенное расстояние (рис. 3).

Другая группа двигательных систем состоит из двух белковых нитей, соединенных белком, связывающим и гидролизующим АТФ. В мышцах это волокна актина, связанные с миозином, в жгутиках и ресничках эукариот – пары микротрубочек, связанных белком динеином. Гидролиз АТФ приводит к изменению конформации миозина или динеина, в результате чего происходит сдвиг нитей друг относительно друга. Диссоциация АДФ и присоединение новой молекулы АТФ приводит к возвращению в исходное состояние. Таким образом эти системы осуществляют возвратно-поступательное движение, такое как мышечное сокращение или изгибание жгутика. В отличие от первого типа, сам белок, гидролизующий АТФ, при этом не перемещается.

Таким образом, за счет способности белков к многочисленным слабым взаимодействиям с определенными молекулами осуществляются все важнейшие процессы жизнедеятельности – образование специфических структур, создание необходимых веществ, передача сигналов и регуляция процессов, транспорт веществ и создание определенной внутренней среды, механическое передвижение.

Вопросы и задания для самостоятельной работы

1. За счет каких взаимодействий молекула белка может связать молекулу глюкозы?
2. Какие группы молекулы белка могут участвовать в связывании молекула аланина?
3. Если фермент осуществляет соединение двух молеклу за счет энергии гидролиза АТФ, сколько участков связывания для малых молекул он должен иметь?
4. Какие полимерные молекулы могут образовывать комплексы с молекулами белков? Какие связи будут при этом образовываться?
5. Один и тот же гормон вызывает разный ответ в клетках различных тканей. Чем это может быть обусловлено?

Литература

1. Альбертс Б., Брей Д. и др. Молекулярная биология клетки. Гл. 3. – М.: Мир, 1986.
2. Ленинджер А. Биохимия. Гл. 9. – М.: Мир, 1985.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Под первичной структурой, уже знакомой нам из главы о пептидах (гл. 4), понимается последовательность аминокислот в полипептидной цепи (или цепях) и положение дисульфидных связей, если они имеются.

Вторичная структура

На этом структурном уровне описываются стерические взаимосвязи между расположенными близко друг к другу вдоль цепи аминокислотами. Вторичная структура может быть регулярной (а-спираль, складчатый -слой) или не обнаруживать никаких признаков регулярности (неупорядоченная конформация).

Третичная структура

Общее расположение, взаимную укладку различных областей, доменов и отдельных аминокислотных остатков одиночной полипептидной цепи называют третичной структурой данного белка. Четкой границы между вторичной и третичной структурами провести нельзя, однако под третичной структурой понимают стерические взаимосвязи между аминокислотными остатками, далеко отстоящими друг от друга по цепи.

Четвертичная структура

Если белки состоят из двух и более полипептидных цепей, связанных между собой нековалентными (не пептидными и не дисульфидными) связями, то говорят, что они обладают четвертичной структурой. Такие агрегаты стабилизируются водородными связями и электростатическими взаимодействиями между остатками, находящимися на поверхности полипептидных цепей. Подобные белки называют олигомерами, а составляющие их индивидуальные полипептидные цепи-протомерами, мономерами или субъединицами.

Многие олигомерные белки содержат два или четыре протомера и называются димерами или тетрамерами соответственно. Довольно часто встречаются олигомеры, содержащие более четырех протомеров, особенно среди регуляторных белков (пример - транскарбамоилаза). Олигомерные белки играют особую роль во внутриклеточной регуляции: их протомеры могут слегка менять взаимную ориентацию, что приводит к изменению свойств олигомера. Наиболее изученный пример - гемоглобин (гл. 16).

Роль первичной структуры в формировании более высоких уровней структурной организации белка

Вторичная и третичная структуры белка формируются самопроизвольно и определяются первичной структурой его полипептидной цепи. Параллельно синтезу цепи происходят ее локальное свертывание (образование вторичной структуры) и специфическая агрегация свернутых участков (формирование третичной структуры). Эти процессы детерминируются химическими группами, отходящими от атомов а-углерода соответствующих остатков. Например, обработка мономерного фермента рибонуклеазы мягким восстанавливающим агентом ф-меркаптоэтанолом) и денатурирующим агентом (мочевиной или гуанидином; см. ниже) приводит к инактивации белка и переходу его в неупорядоченную конформацию. Если медленно удалять денатурирующий агент и осуществлять постепенное реокисление, то вновь образуются S-S-связи и практически восстанавливается ферментативная активность. Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка выше первичного, поскольку первичная структура специфически определяет и вторичную, и третичную, и четвертичную структуру (если она имеется)-т.е. конформацию белка. Нативной конформацией белка, в частности рибонуклеазы, по-видимому, является термодинамически наиболее устойчивая структура в данных условиях, т.е. при данных гидрофильных и гидрофобных свойствах среды.

Структура белка после его синтеза может модифицироваться (посттрансляционный процессинг); так, часто наблюдается превращение препрофермента в каталически активную форму или удаление «лидерной» последовательности, детерминирующей транспорт белков через мембраны (гл. 42).

Макромолекулярные белковые комплексы

Полифункциональные макромолекулярные комплексы, образующиеся в результате агрегации различных функциональных белков, каждый из которых обладает всеми четырьмя уровнями структурной организации, функционируют в цепи транспорта электронов (гл. 12), участвуют в биосинтезе жирных кислот (гл. 23) и метаболизме пирувата (гл. 18).

В основе каждого белка лежит полипептидная цепь. Она не просто вытянута в пространстве, а организована в трехмерную структуру. Поэтому существует понятие о 4-х уровнях пространственной организации белка, а именно - первичной, вторичной, третичной и четвертичной структурах белковых молекул.

ПЕРВИЧНАЯ СТРУКТУРА

Первичная структура белка - последовательность аминокислотных фрагментов, прочно (и в течение всего периода существования белка) соединенных пептидными связями. Существует период полужизни белковых молекул - для большинства белков около 2-х недель. Если произошел разрыв хотя бы одной пептидной связи, то образуется уже другой белок.

ВТОРИЧНАЯ СТРУКТУРА

Вторичная структура - это пространственная организация стержня полипептидной цепи. Существуют 3 главнейших типа вторичной структуры:

1) Альфа-спираль - имеет определенные характеристики: ширину, расстояние между двумя витками спирали. Для белков характерна правозакрученная спираль. В этой спирали на 10 витков приходится 36 аминокислотных остатков. У всех пептидов, уложенных в такую спираль, эта спираль абсолютно одинакова. Фиксируется альфа-спираль с помощью водородных связей между NH-группами одного витка спирали и С=О группами соседнего витка. Эти водородные связи расположены параллельно оси спирали и многократно повторяются, поэтому прочно удерживают спиралеобразную структуру. Более того, удерживают в несколько напряженном состоянии (как сжатую пружину).

Бета-складчатая структура - или структура складчатого листа. Фиксируется также водородными связями между С=О и NH-группами. Фиксирует два участка полипептидной цепи. Эти цепи могут быть параллельны или антипараллельны. Если такие связи образуются в пределах одного пептида, то они всегда антипараллельны, а если между разными полипептидами, то параллельны.

3) Нерегулярная структура - тип вторичной структуры, в котором расположение различных участков полипептидной цепи относительно друг друга не имеет регулярного (постоянного) характера, поэтому нерегулярные структуры могут иметь различную конформацию.

ТРЕТИЧНАЯ СТРУКТУРА

Это трехмерная архитектура полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.

Выделяют два общих типа третичной структуры:

1) В фибриллярных белках (например, коллаген, эластин) молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.

2) В глобулярных белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.

Обычно в глобулярных белках гидрофобные участки молекулы находятся в глубине молекулы. Соединяясь между собой, гидрофобные радикалы образуют гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы. Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА

Встречается не у всех белков, а только у тех, которые состоят из двух или более полипептидных цепей. Каждая такая цепь называется субъединицей данной молекулы (или протомером). Поэтому белки, обладающие четвертичной структурой, называют олигомерными белками. В состав белковой молекулы могут входить одинаковые или разные субъединицы. Например, молекула гемоглобина «А» состоит из двух субъединиц одного типа и двух субъединиц другого типа, то есть является тетрамером. Фиксируются четвертичные структуры белков всеми типами слабых связей, а иногда еще и дисульфидными связями.

КОНФИГУРАЦИЯ И КОНФОРМАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Из всего сказанного можно заключить, что пространственная организация белков очень сложна. В химии существует понятие - пространственная конфигурация - жестко закрепленное ковалентными связями пространственное взаимное расположение частей молекулы (например: принадлежность к L-ряду стереоизомеров или к D-ряду).

Для белков также используется понятие конформация белковой молекулы - определенное, но не застывшее, не неизменное взаимное расположение частей молекулы. Так как конформация белковой молекулы формируется при участии слабых типов связей, то она является подвижной (способной к изменениям), и белок может изменять свою структуру. В зависимости от условий внешней среды молекула может существовать в разных конформационных состояниях, которые легко переходят друг в друга. Энергетически выгодными для реальных условий являются только одно или несколько конформационных состояний, между которыми существует равновесие. Переходы из одного конформационного состояния в другое обеспечивают функционирование белковой молекулы. Это обратимые конформационные изменения (встречаются в организме, например, при проведении нервного импульса, при переносе кислорода гемоглобином). При изменении конформации часть слабых связей разрушается, и образуются новые связи слабого типа.

ЛИГАНДЫ

Взаимодействие белка с каким-нибудь веществом иногда приводит к связыванию молекулы этого вещества молекулой белка. Этот явление известно как «сорбция» (связывание). Обратный же процесс - освобождение другой молекулы от белковой называется «десорбция».

Если для какой-нибудь пары молекул процесс сорбции преобладает над десорбцией, то это уже специфическая сорбция, а вещество, которое сорбируется, называется «лиганд».

Виды лигандов:

1) Лиганд белка-фермента – субстрат.

2) Лиганд траспортного белка – транспортируемое вещество.

3) Лиганд антитела (иммуноглобулина) – антиген.

4) Лиганд рецептора гормона или нейромедиатора – гормон или нейромедиатор.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты.

В природных условиях белки имеют несколько термодинамически выгодных конформационных состояний. Это нативные состояния (природные). Natura (лат.) – природа.

НАТИВНОСТЬ БЕЛКОВОЙ МОЛЕКУЛЫ

Нативность - это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии.

Например: белок хрусталика глаза - кристаллин - обладает высокой прозрачностью только в нативном состоянии).

ДЕНАТУРАЦИЯ БЕЛКА

Для обозначения процесса, при котором нативные свойства белка теряются, используют термин денатурация.

Денатурация - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.

ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ДЕНАТУРАЦИЮ БЕЛКОВ

Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.

Физические факторы

1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-50°С. Такие белки называют термолабильными . Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными .

2. Ультрафиолетовое облучение

3. Рентгеновское и радиоактивное облучение

4. Ультразвук

5. Механическое воздействие (например, вибрация).

Химические факторы

1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).

2. Соли тяжелых металлов (например, CuSO 4).

3. Органические растворители (этиловый спирт, ацетон)

4. Растительные алкалоиды.

5. Мочевина в высоких концентрациях


5. Другие вещества, способные нарушать слабые типы связей в молекулах белков.

Воздействие факторами денатурации применяют для стерилизации оборудования и инструментов, а также как антисептики.

Обратимость денатурации

В пробирке (in vitro) чаще всего это – необратимый процесс. Если же денатурированный белок поместить в условия, близкие к нативным, то он может ренатурировать, но очень медленно, и такое явление характерно не для всех белков.

In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации. Такие специфические белки известны как «белки теплового шока» или «белки стресса».

Белки стресса

Существует несколько семейств этих белков, они отличаются по молекулярной массе.

Например, известен белок hsp 70 – heatshock protein массой 70 kDa.

Такие белки есть во всех клетках организма. Они выполняют также функцию транспорта полипептидных цепей через биологические мембраны и участвуют в формировании третичной и четвертичной структур белковых молекул. Перечисленные функции белков стресса называются шаперонными. При различных видах стресса происходит индукция синтеза таких белков: при перегреве организма (40-44°С), при вирусных заболеваниях, отравлениях солями тяжелых металлов, этанолом и др.

В организме южных народов установлено повышенное содержание белков стресса, по сравнению с северной расой.

Молекула белка теплового шока состоит из двух компактных глобул, соединенных свободной цепью:

Разные белки теплового шока имеют общий план построения. Все они содержат контактные домены.

Разные белки с различными функциями могут содержать одинаковые домены. Например, различные кальций-связывающие белки имеют одинаковый для всех них домен, отвечающий за связывание Ca +2 .

Роль доменной структуры заключается в том, что она предоставляет белку большие возможности для выполнения своей функции благодаря перемещениям одного домена по отношению к другому. Участки соединения двух доменов – самое слабое в структурном отношении место в молекуле таких белков. Именно здесь чаще всего происходит гидролиз связей, и белок разрушается.

  • Меню
    • Космос
    • География
    • Человек
    • История
    • Биология
    • Психология
  • Реклама
  • Главная
  • © "BioFile.ru"
Включайся в дискуссию
Читайте также
Смотреть что такое
Закончена ли карьера главы Хакасии Виктора Зимина?
Жан Фруассар. Хроники. Жан фруассар Отрывок, характеризующий Фруассар, Жан