Подпишись и читай
самые интересные
статьи первым!

Ядерный синтез вместо расщепления (путь спасения для человечества?). Термоядерный синтез впервые дал энергию

Все звёзды, и наше Солнце в том числе, производят энергию с помощью термоядерного синтеза. Научный мир находится в затруднении. Ученые знают не все способы, которыми можно получить подобный синтез (термоядерный). Слияние лёгких атомных ядер и превращение их в более тяжёлые говорит о том, что получилась энергия, которая может носить либо управляемый характер, либо взрывной. Последний используется в термоядерных взрывных конструкциях. Управляемый же термоядерный процесс имеет отличие от остальной ядерной энергетики тем, что она использует реакцию распада, когда тяжёлые ядра расщепляются на более лёгкие, а вот ядерные реакции с применением дейтерия (2 Н) и трития (3 Н) - слияние, то есть именно управляемый синтез термоядерный. В будущем планируется применение гелия-3 (3 Не) и бора-11 (11 В).

Мечта

Нельзя путать традиционный и всем известный синтез термоядерный с тем, что представляет собой мечта сегодняшних физиков, в воплощение которой пока не верит никто. Имеется в виду ядерная реакция при любой, даже комнатной температуре. Также это отсутствие радиации и холодный термоядерный синтез. Энциклопедии говорят нам, что ядерная реакция синтеза в атомно-молекулярных (химических) системах - это процесс, где не требуется значительного нагрева вещества, но подобную энергию человечество пока не добывает. Это при том, что абсолютно все ядерные реакции, при которых происходит синтез, находятся в состоянии плазмы, а температура её составляет миллионы градусов.

На данный момент это мечта даже не физиков, а фантастов, но тем не менее разработки ведутся давно и упорно. Синтез термоядерный без постоянно сопутствующей опасности уровня Чернобыля и Фукусимы - это ли не великая цель для блага человечества? Зарубежная научная литература дала разные названия этому явлению. Например, LENR - обозначение низкоэнергетических ядерных реакций (low-energy nuclear reactions), и CANR - химически индуцируемых (ассистируемых) ядерных реакций. Удачные осуществления подобных экспериментов декларировались достаточно часто, представляя обширнейшие базы данных. Но либо СМИ выдавали очередную "утку", либо результаты говорили о некорректно поставленных опытах. Холодный термоядерный синтез не снискал пока по-настоящему убедительных доказательств своего существования.

Звёздный элемент

Самым распространённым элементом в космосе является водород. Примерно половина массы Солнца и большей части остальных звёзд приходится на его долю. Водород есть не только в их составе - его много и в межзвёздном газе, и в газовых туманностях. А в недрах звёзд, в том числе и Солнца, созданы условия термоядерного синтеза: там превращаются ядра атомов водорода в атомы гелия, посредством чего образуется огромная энергия. Водород - главный её источник. Ежесекундно наше Солнце излучает в пространство космоса энергию, эквивалентную четырем миллионам тонн вещества.

Вот что даёт слияние в одно ядро гелия четырёх ядер водорода. Когда сгорает один грамм протонов, энергия термоядерного синтеза выделяется в двадцать миллионов раз больше, чем при сгорании такого же количества каменного угля. В земных условиях сила термоядерного синтеза невозможна, поскольку пока не освоены человеком такие температуры и давления, какие существуют в недрах звёзд. Расчёты показывают: как минимум ещё тридцать миллиардов лет наше Солнце не угаснет и не ослабнет за счёт присутствия водорода. А на Земле люди только начинают понимать, что такое водородная энергетика и какова реакция термоядерного синтеза, поскольку работа с этим газом весьма рискованная, а хранить его чрезвычайно трудно. Пока что человечество умеет только расщеплять атом. И на этом принципе построен каждый реактор (ядерный).

Термоядерный синтез

Ядерная энергия - продукт расщепления атомов. Синтез же получает энергию другим путём - методом соединения их друг с другом, когда не образуются смертоносные радиоактивные отходы, а небольшого количества морской воды хватило бы на производство такого же количества энергии, сколько получается от сжигания двух тонн угля. В лабораториях мира уже было доказано, что вполне возможен управляемый термоядерный синтез. Однако электростанции, которые использовали бы эту энергию, пока не возведены, даже строительство их не предвидится. Но двести пятьдесят миллионов долларов были потрачены только Соединёнными Штатами, чтобы исследовать такое явление, как управляемый термоядерный синтез.

Затем эти исследования были буквально дискредитированы. В 1989 году химики С. Понс (США) и М. Флешман (Великобритания) заявили на весь мир, что им удалось достичь положительного результата и запустить термоядерный синтез. Проблемы заключались в том, что учёные слишком поторопились, не подвергнув своё открытие рецензированию со стороны научного мира. СМИ мгновенно схватили сенсацию и подали это заявление как открытие века. Проверка была проведена позже, и обнаружились не просто ошибки в проведении эксперимента - это был провал. И разочарованию тогда поддались не только журналисты, но и многие весьма уважаемые физики мировой величины. Солидные лаборатории Принстонского университета потратили на проверку эксперимента более пятидесяти миллионов долларов. Таким образом, холодный термоядерный синтез, принцип его получения были объявлены лженаукой. Лишь маленькие и разобщённые группы энтузиастов продолжили эти исследования.

Суть

Теперь термин предлагают заменить, и вместо холодного ядерного синтеза будет звучать следующее определение: ядерный процесс, индуцированный кристаллической решёткой. Под этим явлением понимают аномальные низкотемпературные процессы, с точки зрения ядерных столкновений в вакууме просто невозможные - выделение нейтронов посредством слияния ядер. Эти процессы могут существовать в неравновесных твёрдых телах, стимулирующихся трансформациями упругой энергии в кристаллической решётке при механических воздействиях, фазовых переходах, сорбции или десорбции дейтерия (водорода). Это аналог уже известной горячей термоядерной реакции, когда сливаются ядра водорода и превращаются в ядра гелия, выделяя колоссальную энергию, но происходит это при комнатной температуре.

Холодный термоядерный синтез точнее определяется как фотоядерные реакции, химически индуцированные. Прямого холодного термоядерного синтеза так и не удалось достичь, но поисками были подсказаны совершенно другие стратегии. Термоядерная реакция запускается генерацией нейтронов. Механическое стимулирование химическими реакциями приводит к возбуждению глубоких электронных оболочек, рождая гамма- или рентгеновское излучение, которое перехватывается ядрами. То есть происходит фотоядерная реакция. Ядра распадаются, и генерируют таким образом нейтроны и, вполне возможно, гамма-кванты. Что же может возбудить внутренние электроны? Вероятно, ударная волна. От взрыва обычной взрывчатки.

Реактор

Более сорока лет мировое термоядерное лобби тратит около миллиона долларов ежегодно на исследования термоядерного синтеза, который предполагается получить с помощью ТОКАМАКа. Однако практически все прогрессивные учёные против таких исследований, поскольку положительный результат, скорее всего, невозможен. Западная Европа и США разочарованно приступили к демонтажу всех своих ТОКАМАКов. И только в России ещё верят в чудо. Хотя многие учёные считают эту идею идеальным тормозом альтернативы ядерному синтезу. Что же такое ТОКАМАК? Это один из двух проектов термоядерного реактора, представляющий собой тороидальную камеру с магнитными катушками. А ещё существует стелларатор, в котором плазма удерживается в магнитном поле, но катушки, наводящие магнитное поле, - внешние, в отличие от ТОКАМАКа.

Это очень непростая конструкция. ТОКАМАК по сложности вполне достоен Большого адронного коллайдера: более десяти миллионов элементов, а общие затраты вместе со строительством и стоимостью проектов значительно превышают двадцать миллиардов евро. Коллайдер намного дешевле обошёлся, а поддержка работоспособности МКС также стоит не дороже. Тороидальные магниты требуют восьмидесяти тысяч километров сверхпроводящей нити, их общий вес превосходит четыреста тонн, а полностью реактор весит примерно двадцать три тысячи тонн. Эйфелева башня, например, весит всего семь тысяч с небольшим. Плазма ТОКАМАКа состаляет восемьсот сорок кубометров. Высота - семьдесят три метра, шестьдесят из них - под землёй. Для сравнения: Спасская башня имеет высоту всего семьдесят один метр. Площадь платформы реактора - сорок два гектара, как шестьдесят футбольных полей. Температура плазмы - сто пятьдесят миллионов градусов по Цельсию. В центре Солнца она в десять раз ниже. И всё это ради управляемого термоядерного синтеза (горячего).

Физики и химики

Но вернёмся к "забракованному" открытию Флешмана и Понса. Все их коллеги заявляют, что всё-таки удалось создать условия, где атомы дейтерия подчиняются волновым эффектам, ядерная энергия высвобождается в виде тепла в соответствии с теорией квантовых полей. Последняя, кстати, прекрасно разработана, но адски сложна и к описанию каких-то конкретных явлений физики с трудом приложима. Именно поэтому, наверное, люди не хотят её доказывать. Флешман демонстрирует выемку в бетонном полу лаборатории от взрыва, случившегося, как он утверждает, от холодного термояда. Однако физики химикам не верят. Интересно, почему?

Ведь сколько возможностей для человечества закрываются с прекращением исследований в этом направлении! Проблемы же просто глобальные, и их много. И все они требуют решения. Это экологически чистый источник энергии, посредством которого можно было бы дезактивировать громадные объёмы радиоактивных отходов после работы атомных электростанций, опреснять морскую воду и много чего ещё. Если бы освоить выработку энергии способом превращения одних элементов таблицы Менделеева в совершенно другие без использования для этой цели потоков нейтронов, которые создают наведённую радиоактивность. Но наука официально и сейчас считает невозможным превращение каких-либо химических элементов в совершенно другие.

Росси-Пархомов

В 2009 году изобретатель А. Росси запатентовал аппаратуру, названную катализатором энергии Росси, которая реализует холодный термоядерный синтез. Устройство это было неоднократно продемонстрировано на публике, но независимой проверке не подвергалось. Физик Марк Гиббс на страницах журнала морально уничтожил и автора, и его открытие: без объективного анализа, дескать, подтверждающего совпадение полученных результатов с заявленными, это не может быть новостью науки.

Но в 2015 году Александр Пархомов успешно повторил эксперимент Росси с его низкоэнергетическим (холодным) ядерным реактором (LENR) и доказал, что у последнего огромные перспективы, хотя и под вопросом коммерческая значимость. Эксперименты, результаты которых были представлены на семинаре во Всероссийском НИИ эксплуатации атомных электростанций, показывают, что самая примитивная копия детища Росси - его ядерного реактора, может вырабатывать в два с половиной раза больше энергии, чем потребляет.

"Энергонива"

Легендарный учёный из Магнитогорска А. В. Вачаев создал установку "Энергонива", с помощью которой им был обнаружен некий эффект трансмутации элементов и выработка электроэнергии в этом процессе. Верилось с трудом. Попытки обратить внимание фундаментальной науки на это открытие оказались тщетными. Критика раздавалась отовсюду. Наверное, авторам не нужно было самостоятельно выстраивать теоретические выкладки относительно наблюдаемых явлений, или физикам высшей классической школы стоило быть повнимательнее к экспериментам с высоковольтным электролизом.

Но зато была отмечена такая взаимосвязь: ни один детектор не зарегистрировал ни одного излучения, однако рядом с работающей установкой находиться было нельзя. В группе исследователей трудились шесть человек. Пять из них вскоре умерли в возрасте от сорока пяти до пятидесяти пяти лет, а шестой получил инвалидность. Смерть наступила по совершенно разным причинам через некоторе время (в течение примерно семи-восьми лет). И тем не менее на установке "Энергонива" последователями уже третьего поколения и учеником Вачаева были проделаны опыты и сделано предположение, что низкоэнергетическая ядерная реакция имела место в экспериментах погибшего учёного.

И. С. Филимоненко

Холодный термоядерный синтез исследовался в СССР уже в конце пятидесятых годов прошлого века. Реактор был сконструирован Иваном Степановичем Филимоненко. Однако в принципах действия этого агрегата никто не сумел разобраться. Именно поэтому вместо позиции безусловного лидера в области ядерно-энергетических технологий, наша страна заняла место сырьевого придатка, распродающего собственные природные богатства, лишающего целые поколения будущего. А ведь опытная установка уже была создана, и она производила реакцию тёплого синтеза. Автором самых прорывных энергетических конструкций, подавляющих радиацию, был уроженец Иркутской области, прошедший разведчиком всю войну от своих шестнадцати до двадцати лет, орденоносец, энергичный и талантливый физик И. С. Филимоненко.

Термоядерный синтез холодного типа был, как никогда, близок. Тёплый синтез проходил при температуре всего 1150 градусов по Цельсию, а основой была тяжёлая вода. Филимоненко отказали в патенте: якобы ядерная реакция невозможна при такой низкой температуре. Но синтез шёл! Тяжёлая вода разлагалась посредством электролиза на дейтерий и кислород, дейтерий растворялся в палладии катода, где и происходила реакция ядерного синтеза. Производство безотходное, то есть без радиации, а нейтронное излучение тоже осутствовало. Только в 1957 году, заручившись поддержкой академиков Келдыша, Курчатова и Королёва, чей автортет был непререкаем, Филимоненко сумел сдвинуть дело с мёртвой точки.

Распад

В 1960-м году, в связи с секретным постановлением Совета министров СССР и ЦК КПСС, начались работы по изобретению Филимоненко под контролем Министерства обороны. В ходе экспериментов исследователь обнаружил, что при работе реактора появляется некое излучение, сокращающее период полураспада изотопов очень быстро. Чтобы понять природу этого излучения, потребовалось полвека. Теперь мы знаем, что это такое - нейтроний с динейтронием. А тогда, в 1968-м, работа практически остановилась. Филимоненко был обвинён в политической нелояльности.

В 1989 году учёного реабилитировали. Его установки начали было воссоздаваться в НПО "Луч". Но дальше опытов дело не пошло - не успели. Страна погибла, а новым русским было не до фундаментальной науки. Один из лучших инженеров двадцатого века умер в 2013 году, так и не увидев счастья человечества. Мир запомнит Ивана Степановича Филимоненко. Холодный термоядерный синтез когда-нибудь наладят его последователи.

Масса представляет собой особую форму энергии, о чем и свидетельствует известная формула Эйнштейна E = mc 2 . Из нее следует возможность преобразования массы в энергию и энергии в массу. И такие реакции на внутриатомном уровне вещества реально имеют место. В частности, часть массы атомного ядра может превращаться в энергию, и происходит это двумя путями. Во-первых, крупное ядро может распасться на несколько мелких — такой процесс называется реакцией распада . Во-вторых, несколько более мелких ядер могут объединиться в одно более крупное — это так называемая реакция синтеза . Реакции ядерного синтеза во Вселенной распространены очень широко — достаточно упомянуть, что именно из них черпают энергию звезды. Ядерный распад сегодня служит одним из основных источников энергии для человечества — он используется на атомных электростанциях. И при реакции распада, и при реакции синтеза совокупная масса продуктов реакции меньше совокупной массы реагентов. Эта-то разница в массе и преобразуется в энергию по формуле E = mc 2 .

Распад

В природе уран встречается в форме нескольких изотопов, один из которых — уран-235 (235 U) — самопроизвольно распадается с выделением энергии. В частности, при попадании достаточно быстрого нейтрона в ядро атома 235 U последнее распадается на два крупных куска и ряд мелких частиц, включая, обычно, два или три нейтрона. Однако сложив массы крупных фрагментов и элементарных частиц, мы недосчитаемся определенной массы по сравнению с массой исходного ядра до его распада под воздействием удара нейтрона. Эта-то недостающая масса и выделяется в виде энергии, распределенной среди получившихся продуктов распада — прежде всего, кинетической энергии (энергии движения). Стремительно движущиеся частицы разлетаются от места распада и сталкиваются с другими частицами вещества, разогревая их.

Они представляют собой стремительно разлетающиеся от места распада частицы, при этом далеко они не улетают, врезаясь в соседние атомы вещества и разогревая их. Таким образом, энергия, порождаемая ядерным распадом, преобразуется в теплоту окружающего вещества.

В уране, добываемом из природной урановой руды, изотопа урана-235 содержится всего 0,7% от общей массы урана — остальные 99,3% приходятся на долю относительно устойчивого (слабо радиоактивного) изотопа 238 U, который просто поглощает свободные нейтроны, не распадаясь под их воздействием. Поэтому для использования урана в качестве топлива в ядерных реакторах его нужно предварительно обогатить — то есть довести содержание радиоактивного изотопа 235 U до уровня не менее 5%.

После этого уран-235 в составе обогащенного природного урана в атомном реакторе распадается под воздействием бомбардировки нейтронами. В результате из одного ядра 235 U выделяется в среднем 2,5 новых нейтрона, каждый из которых вызывает распад еще 2,5 ядер, и запускается так называемая цепная реакция. Условием для продолжения незатухающей реакции распада урана-235 является превышение числа выделяемых распадающимися ядрами нейтронов числа нейтронов, покидающих урановый конгломерат; в этом случае реакция продолжается с выделением энергии.

В атомной бомбе реакция носит умышленно неконтролируемый характер, в результате чего за доли секунды распадается огромное число ядер 235 U и выделяется колоссальная по своей разрушительности взрывная энергия. В атомных реакторах, используемых в энергетике, реакцию распада необходимо строго контролировать с целью дозирования выделяемой энергии. Хорошим поглотителем нейтронов является кадмий — его-то обычно и используют для управления интенсивностью распада в реакторах АЭС. Кадмиевые стержни погружают в активную зону реактора до уровня, необходимого для снижения скорости выделения свободной энергии до технологически разумных пределов, а в случае падения энерговыделения ниже необходимого уровня частично выводят стержни из активной зоны реакции, после чего реакция распада интенсифицируется до необходимого уровня. Выделившаяся тепловая энергия затем в обычном порядке (посредством турбогенераторов) преобразуется в электрическую.

Синтез

Термоядерный синтез — реакция прямо противоположная реакции распада по своей сути: более мелкие ядра объединяются в более крупные. Самая распространенная во Вселенной реакция вообще — это реакция термоядерного синтеза ядер гелия из ядер водорода: она непрерывно протекает в недрах практически всех видимых звезд. В чистом виде она выглядит так: четыре ядра водорода (протона) образуют атом гелия (2 протона + 2 нейтрона) с выделением ряда других частиц. Как и в случае реакции распада атомного ядра совокупная масса образовавшихся частиц оказывается меньше массы исходного продукта (водорода) — она и выделяется в виде кинетической энергии частиц-продуктов реакции, за счет чего звезды и разогреваются.

В недрах звезд реакция термоядерного синтеза происходит не единовременно (когда сталкиваются 4 протона), а в три этапа. Сначала из двух протонов образуется ядро дейтерия (один протон и один нейтрон). Затем, после попадания в ядро дейтерия еще одного протона, образуется гелий-3 (два протона и один нейтрон) плюс другие частицы. И наконец, два ядра гелия-3 сталкиваются, образуя гелий-4, два протона, а также другие частицы. Однако по совокупности эта трехэтапная реакция дает чистый эффект образования из четырех протонов ядра гелия-4 с выделением энергии, уносимой быстрыми частицами, прежде всего фотонами (см. Эволюция звезд).

Естественная реакция термоядерного синтеза происходит в звездах; искусственная — в водородной бомбе. Увы, человек до сих пор не сумел найти средств для того, чтобы направить термоядерный синтез в управляемое русло и научиться получать за счет него энергию для использования в мирных целях. Однако ученые не теряют надежды на достижение положительных результатов в области получения «мирной и дешевой» термоядерной энергии уже в обозримом будущем — для этого главное научиться удерживать высокотемпературную плазму либо посредством лазерных лучей, либо посредством сверхмощных тороидальных электромагнитных полей (см.

Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что силы, действующие на таких расстояниях, преобладают над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. Оно будет иметь несколько меньшую массу, чем сумма масс исходных ядер, а разница становится энергией которая и выделяется в процессе реакции. Количество выделяемой энергии описывает известная формула E=mc². Более легкие атомные ядра проще свести на нужное расстояние, поэтому водород - самый распространенный элемент во Вселенной - является наилучшим горючим для реакции синтеза.

Установлено, что смесь двух изотопов водорода, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, продуцировать меньше нейтронов. Особенную заинтересованность вызывают, так называемые «Безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на его декомиссию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Схема реакции дейтерий-тритий

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция - дейтерий + тритий :

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт)

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток её- выход нежелательной нейтронной радиации.

Два ядра : дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона .

²H + ³He = 4 He + . при энергетическом выходе 18,4 МэВ

Условия её достижения значительно сложнее. Гелий-3,кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTt (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

Реакция между ядрами дейтерия (D-D, монотопливо)

Так же возможны реакции между ядрами дейтерия , они идут немного труднее реакции с участием гелия-3 :

В результате в дополнение к основной реакции в ДД-плазмы так же происходят:

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3 , а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием .

Другие типы реакций

Возможны и некоторые другие типы реакций. Выбор топлива зависит от многих факторов - его доступность и дешевизна, энергетический выход, лёгкость достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч.

«Безнейтронные» реакции

Наиболее перспективны т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.

Условия

Ядерная реакция лития-6 с дейтерием 6 Li(d,α)α

УТС возможен при одновременном выполнении двух критериев:

  • Температура плазмы:
src="/pictures/wiki/files/101/ea2cc6cfd93c3d519e815764da74047a.png" border="0">
  • Соблюдение критерия Лоусона :
src="/pictures/wiki/files/102/fe017490a33596f30c6fb2ea304c2e15.png" border="0"> (для реакции D-T)

где - плотность высокотемпературной плазмы, - время удержания плазмы в системе.

Именно от значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного исследовательского реактора ITER находится в начальной стадии.

Термоядерная энергетика и гелий-3

Запасы гелия-3 на Земле составляют от 500 кг до 1 тонны, однако на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам - 500 тысяч тонн). В настоящее время контролируемая термоядерная реакция осуществляется путем синтеза дейтерия ²H и трития ³H с выделением гелия-4 4 He и «быстрого» нейтрона n :

Однако при этом большая часть (более 80%) выделяемой кинетической энергии приходится именно на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую . Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов . В отличие от этого синтез дейтерия и гелия-3 ³He не производит (почти) радиоактивных продуктов:

Где p - протон

Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие, как магнитогидродинамический генератор .

Конструкции реакторов

Рассматриваются две принципиальные схемы осуществления управляемого термоядерного синтеза.

Исследования первого вида термоядерных реакторов существенно более развиты, чем второго. В ядерной физике , при исследованиях термоядерного синтеза , для удержания плазмы в некотором объёме используется магнитная ловушка. Магнитная ловушка призвана удерживать плазму от контакта с элементами термоядерного реактора , т.е. используется в первую очередь как теплоизолятор. Принцип удержания основан на взаимодействии заряженных частиц с магнитным полем, а именно на вращении заряженных частиц вокруг силовых линий магнитного поля. К сожалению, замагниченная плазма очень не стабильна и стремится покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются самые сверхмощныме электромагниты , потребляющее огромное количество энергии.

Можно уменьшить размер термоядерного реактора, если в нем использовать одновременно три способа создания термоядерной реакции.

A. Инерционный синтез. Облучать крошечные капсулы дейтериево-тритиевого топлива лазером мощностью 500 триллионов ватт:5. 10^14 Вт. Этот гигантский, очень кратковременный лазерный импульс 10^-8 c приводит к взрыву топливных капсул, в результате чего на доли секунды рождается мини-звезда. Но термоядерной реакции на нем не достигнуть.

B. Одновременно использовать Z-machine с Токамаком.

Z-Машина действует иначе чем лазер. Она пропускает через паутину тончайших проводов, окружающих топливную капсулу, заряд мощностью в полтриллиона ватт 5. 10^11 Вт.

Далее происходит примерно то же самое, что и с лазером: в результате Z-удара получается звезда. В ходе испытаний на Z-Машине уже удалось запустить реакцию синтеза. http://www.sandia.gov/media/z290.htmКапсулы покрыть серебром и соединить нитью из серебра или графита. Процесс поджига выглядит так: Выстрелить нитью (прикрепленных к группе шариков из серебра, внутри которых смесь дейтериия и трития) в вакуумную камеру. Образовать при пробое (разряде) канал молнии по ним, подавать ток по плазме. Одновременно облучить капсулы и плазму лазерным излучением. И одновременно или раньше включить Токамак. использовать три процесса нагрева плазмы одновременно. То есть поместить Z-машину и лазерный нагрев вместе внутри Токамака. Может быть можно создать и колебательный контур из катушек Токамака и организовать резонанс. Тогда он работал бы в экономном колебательном режиме.

Цикл топлива

Реакторы первого поколения будут, вероятнее всего, работать на смеси дейтерия и трития. Нейтроны , которые появляются в процессе реакции, поглотятся защитой реактора, а выделяющееся тепло будет использоваться для нагревания теплоносителяя в теплообменнике , и эта энергия, в свою очередь, будет использоваться для вращения генератора .

. .

Реакция с Li6 является экзотермической , обеспечивая получение небольшой энергии для реактора. Реакция с Li7 является эндотермической - но не потребляет нейтронов. По крайней мере некоторые реакции Li7 необходимы для замены нейтронов потерянных в реакции с другими элементами. Большинство конструкций реактора используют естественные смеси изотопов лития.

Это горючее имеет ряд недостатков:

Реакция продуцирует значительное количество нейтронов , которые активируют (радиоактивно заражают) реактор и теплообменник . Также требуются мероприятия для защиты от возможного истока радиоактивного трития.

Только около 20 % энергии синтеза есть в форме заряженных частиц (остальные нейтроны), что ограничивает возможность прямого превращения энергии синтеза в электроэнергию . Использование D-T реакции зависит от имеющихся запасов лития, которые значительно меньше чем запасы дейтерия. Нейтронное облучение во время D-T реакции настолько значительное, что после первой серии тестов на JET, наибольшем реакторе на сегодняшний день что использует это топливо, реактор стал настолько радиоактивным, что для завершения годового цикла тестов пришлось прибавить роботизованую систему дистанционного обслуживания.

Существуют, в теории, альтернативные виды горючего, которые лишены указанных недостатков. Но их использованию препятствует фундаментальное физическое ограничение. Чтобы получить достаточное количество энергии из реакции синтеза, необходимо удерживать достаточно плотную плазму при температуре синтеза (10 8 K) на протяжении определенного времени. Этот фундаментальный аспект синтеза описывается произведением густоты плазмы, n, на время содержания нагретой плазмы τ, что требуется для достижения точки равновесия. Произведение, nτ, зависит от типа горючего и является функцией температуры плазмы. Из всех видов горючего дейтерий-тритиевая смесь требует самого низкого значения nτ по меньшей мере на порядок, и самую низкую температуру реакции, по меньшей мере в 5 раз. Таким образом, D-T реакция является необходимым первым шагом, однако использование других видов горючего остается важной целью исследований.

Реакция синтеза в качестве промышленного источника электроэнергии

Энергия синтеза рассматривается многими исследователями в качестве «естественного» источника энергии в долгосрочной перспективе. Сторонники коммерческого использования термоядерных реакторов для производства электроэнергии приводят следующие аргументы в их пользу:

  • Практически неисчерпаемые запасы топлива (водород)
  • Топливо можно добывать из морской воды на любом побережье мира, что делает невозможным монополизацию горючего одной или группой стран
  • Невозможность неуправляемой реакции синтеза
  • Отсутствие продуктов сгорания
  • Нет необходимости использовать материалы которые могут быть использованы для производства ядерного оружия, таким образом исключается случаи саботажа и терроризма
  • По сравнению с ядерными реакторами, вырабатывается незначительное количество радиоактивных отходов с коротким периодом полураспада .
  • Оценивают, что наперсток , наполненный дейтерием, производит энергию, эквивалентную 20 тоннам угля. Озеро среднего размера в состоянии обеспечить любую страну энергией на сотни лет. Однако следует заметить, что существующие исследовательские реакторы спроектированы для достижения прямой дейтериево-тритиевой (DT) реакции, цикл топлива которой требует использования лития для производства трития, тогда как заявления о неисчерпаемости энергии касаются использования дейтериево-дейтериевой (DD) реакции во втором поколении реакторов.
  • Так же, как и реакция деления, реакция синтеза не производит атмосферных выбросов углекислоты, что является главным вкладом в глобальное потепление . Это является значительным преимуществом, поскольку использование горючих ископаемых для производства электроэнергии имеет своим следствием то, что, например в США производится 29 кг CO 2 (один из основных газов, которые могут считаться причиной глобального потепления) на жителя США в день.

Стоимость электроэнергии в сравнении с традиционными источниками

Критики указывают, что вопрос о экономической целесообразности использования ядерного синтеза для производства электроэнергии остается открытым. В том же исследовании по заказу Офиса в Справах Науки и Техники Британского Парламента указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от будущей технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, продолжительности эксплуатирования и стоимости декомиссии реактора . Критики коммерческого использования энергии ядерного синтеза отрицают, что углеводородное топливо в значительной мере субсидируется правительством, как прямо так и косвенно, например использованием вооруженных сил для обеспечения их бесперебойного снабжения, война в Ираке часто приводится как неоднозначный пример такого способа субсидирования . Учет таких косвенных субсидий является очень сложным, и делает точное сравнение себестоимости практически невозможным.

Отдельно стоит вопрос стоимости исследований. Страны Европейского Сообщества тратят около 200 млн € ежегодно на исследования, и прогнозируется, что нужно еще несколько десятилетий пока промышленное использование ядерного синтеза станет возможным. Сторонники альтернативных источников электроэнергии считают, что было бы целесообразнее направить эти средства на внедрение возобновляемых источников электроэнергии.

Доступность коммерческой энергии ядерного синтеза

К сожалению, невзирая на распространенный оптимизм (распространенный начиная с 1950-х годов, когда первые исследования начались), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены, неясным является даже насколько может быть экономически выгодно производство электроэнергии с использованием термоядерного синтеза. Хотя прогресс в исследованиях является постоянным, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, что, как оценивается, должно быть в 100 раз интенсивнее чем в традиционных ядерных реакторах.

Различают следующие этапы в исследованиях:

1.Равновесие или режим «перевала» (Break-even): когда общая энергия что выделяется в процессе синтеза равняется общей энергии тратящей на запуск и поддержку реакции. Это соотношение помечают символом Q. Равновесие реакции было продемонстрировано на JET (Joint European Torus) в Великобритании в 1997 году . (Затратив на его разогрев 52 МВт электроэнергии, на выходе ученые получили мощность на 0,2 МВт выше затраченной.)

2.Пылающая плазма (Burning Plasma): промежуточный этап, на котором реакция будет поддерживаться главным образом альфа-частицами, что продуцируются в процессе реакции, а не внешним подогревом. Q ≈ 5. До сих пор не достигнутый.

3. Воспламенение (Ignition): стабильная реакция что поддерживает саму себя. Должна достигаться при больших значениях Q. До сих пор не достигнуто.

Следующим шагом в исследованиях должен стать ITER (International Thermonuclear Experimental Reactor), Международный Термоядерный Экспериментальный Реактор. На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора. Окончательной фазой исследований станет DEMO: прототип промышленного реактора , на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Учитывая ориентировочное время на построение и введение в эксплуатацию промышленного реактора, нас отделяет ~40 лет от промышленного использования термоядерной энергии.

Существующие токамаки

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

  • СССР и Россия
    • Т-3 - первый функциональный аппарат.
    • Т-4 - увеличенный вариант Т-3
    • Т-7 - уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом на базе ниобата олова , охлаждаемого жидким гелием . Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.
    • Т-10 и PLT - следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута заветная температура термоядерного синтеза, а отставание по критерию Лоусона - всего в двести раз.
    • Т-15 - реактор сегодняшнего дня со сверхпроводящим соленоидом, дающим поле напряжённостью 3,6 Тл.
  • Ливия
    • ТМ-4А
  • Европа и Великобритания
    • JET (англ.) (Joint Europeus Tor) - самый крупный в мире токамак, созданный организацией Евратом в Великобритании . В нём использован комбинированный нагрев: 20 МВт - нейтральная инжекция, 32 МВт - ионно-циклотронный резонанс. В итоге критерий Лоусона лишь в 4-5 раз ниже уровня зажигания.
    • Tore Supra (фр.) (англ.) - токамак со сверхпроводящими катушками, один из крупнейших в мире. Находится в исследовательском центре Кадараш (Франция).
  • США
    • TFTR (англ.) (Test Fusion Tokamak Reactor) - крупнейший токамак США (в Принстонском университете) с дополнительным нагревом быстрыми нейтральными частицами. Достигнут высокий результат: критерий Лоусона при истинно термоядерной температуре всего в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.
    • NSTX (англ.) (National Spherical Torus Experiment) - сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.
    • Alcator C-Mod (англ.) - один из трех крупнейших токамаков в США (два других - NSTX и DIII-D), Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 г.

Авария на японской станции Фукусима во второй раз продемонстрировала всему миру опасность атомной энергетики. В странах Европы прошли демонстрации против использования атомных станций. И все же, нет оснований считать, что АЭС больше не будут строиться. Жители Земли потребляют все больше и больше энергии. Для некоторых регионов, где запасы природного угля, нефти и газа минимальны, атомная энергия необходима. К сожалению, альтернативные источники энергии, такие как энергия солнечного света, ветра, волн и т.д. не способны принципиально заменить огромное количество потребляемой человечеством энергии (16 ТВт). Их доля в мировом производстве энергии пока составляет всего 0,5%.

Между тем, современный мир стоит перед очень серьезным энергетическим кризисом. Проблема связана с тем, что по всем серьезным прогнозам запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (программа CCS) для предотвращения серьезных изменений в климате планеты.

Сейчас крайне необходим новый мощный источник энергии. Настало время прорыва. Иначе человечество может само себя уничтожить в борьбе за оставшиеся под землей запасы нефти и газа.

Самой серьезной альтернативой современным источникам энергии ученые считают управляемый термоядерный синтез.

Ядерный синтез, являющийся основой существования Солнца и звезд, потенциально представляет собой неистощимый источник энергии для развития вселенной вообще.

Эксперименты, проводимые в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества, но и гораздо большее количество энергии.

Пример термоядерной реакции — дейтерий + тритий

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

Именно эту реакцию предполагается использовать в будущих термоядерных реакторах. Но осуществить эту реакцию и сделать ее управляемой очень сложно. Для инициирования (зажигания) реакции синтеза необходимо нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов Цельсия, что примерно в десять раз выше температуры в центре Солнца. При этой температуре наиболее «энергетические» дейтроны и тритоны (ядра дейтерия и трития) сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

Осуществление процесса ядерного синтеза в лаборатории связано с очень сложными проблемами. Для решения задачи нагрева и удержания газовой смеси ядер D и T были придуманы «магнитные бутылки», получившие название «Токамак» , которые предотвращают взаимодействие плазмы со стенками реактора. Началом современной эпохи в изучении возможностей термоядерного синтеза следует считать 1969 год, когда на российской установке Токамак Т3 в плазме объемом около 1 м 3 была достигнута температура 3 10 6 °C. После этого ученые во всем мире признали конструкцию токамака наиболее перспективной для магнитного удержания плазмы. Уже через несколько лет было принято смелое решение о создании установки JET (Joint European Torus) со значительно большим объемом плазмы (~100 м 3). Эта установка начала работать в 1983 году и остается пока крупнейшим в мире токамаком, обеспечивающим нагрев плазмы до температуры 150 10 6 °C.

В настоящее время во Франции начинается строительство международного экспериментального термоядерного реактора ITER. Расшифровывается аббревиатура как International Tokamak Experimental Reactor, но в настоящее время название ITER официально не считается аббревиатурой, а связывается с латинским словом iter — путь.

На рисунке - проект строительства реактора ITER в местечке Кадараш, Франция

Задачи, стоящие на пути создания термоядерных реакторов и преимущества ядерной энергетики очень подробно и доступно для понимания были изложены в лекции «На пути к термоядерной энергетике», прочитанной председателем Совета ITER Кристофером Ллуэллин-Смитом в ФИАНе. (http:///elementy.ru/lib/430807)

ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потока тепла. Третья и, возможно, самая главная проблема состоит в обеспечении высокой надежности работы. Таким образом, проектирование и постройка термоядерных станций требуют от физиков и инженеров решения целого ряда разнообразных и очень сложных технологических задач.

Однако, несмотря на все сложности, проблема стоит того, чтобы ей заниматься самым серьезным образом. Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Например, количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 ГВт составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

Дейтерий является устойчивым изотопом водорода. Примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO 2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Термоядерная энергетика не только обещает человечеству, в принципе, возможность производства огромного количества энергии в будущем (без выбросов CO 2 и без загрязнения атмосферы), но и обладает повышенной безопасностью. Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных происшествий или аварий. Кроме того, загрузка «топливом» должна производиться непрерывно, что позволяет легко останавливать ее работу, не говоря уже о том, что в случае аварии и резкого изменения условий окружения термоядерное «пламя» должно просто погаснуть.

В чем состоят связанные с ядерной энергетикой опасности? Во-первых, стоит отметить, что оболочка реактора при длительном нейтронном облучении может стать радиоактивной. Однако при подборе для оболочки материалов с заданными свойствами можно обеспечить распад радиоактивных продуктов с периодом полураспада порядка 10 лет, а полная замена всех компонентов могла бы осуществляться через 100 лет. В случае полного отказа контура охлаждения радиоактивность стенок будет продолжать выделять тепло, но максимальная температура будет значительно ниже того значения, при котором установка расплавится.

Во-вторых, тритий является радиоактивным и имеет относительно небольшой период полураспада (12 лет). Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом примерно как десять почтовых марок). Поэтому, даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития, например, при землетрясении и падении самолета на станцию), в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

Основное препятствие на пути развития исследований в области ядерного синтеза состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и исследовать в малых размерах, поскольку для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

За последние два десятилетия наблюдался и значительный прогресс в теоретическом понимании поведения плазмы. В этой области необходимо отметить два результата, имеющих особую важность в рассматриваемых задачах:

1. Была обнаружена способность горячей плазмы (предсказанная ранее в лаборатории Culham, Великобритания) к самогенерации собственного тока, что получило название «зашнуровки» плазмы. Например, можно ожидать, что примерно 80% от тока величиной 15 MA, необходимого для удержания плазмы в реакторе ITER, будет возникать на основе этого эффекта, в результате чего поддержание рабочего режима реактора потребует намного меньше энергии, а само управление его работой станет гораздо более простым.

2. В Институте физики плазмы в Гархинге (Garching, Германия) в экспериментах по термоядерному слиянию наблюдался режим «высокого удержания», позволяющий значительно повысить давление в системе (то есть увеличить эффективность работы установки) при некоторых значениях магнитного поля в установке.

Реактор ITER создается консорциумом, в который входят Европейское Сообщество, Япония, Россия, США, Китай, Южная Корея и Индия. Общая численность населения этих стран составляет около половины всего населения Земли, так что проект можно назвать глобальным ответом на глобальный вызов. Основные компоненты и узлы реактора ITER уже созданы и испытаны, а строительство уже начато в местечке Кадараш (Франция). Запуск реактора запланирован на 2019 год, а получение дейтерий-водородной плазмы — на 2026 год, так как ввод реактора в действие требует длительных и серьезных испытаний для плазмы из водорода и дейтерия.

Как сказал Кристофер Ллуэллин-Смит, председатель Совета ИТЭР: «Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но я лично полагаю, что вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.»

На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству» . Возможно, это время пришло.

Рис. 25. Положение rp -процесса относительно линииβ стабильности.

Процесс, который временами связан с р -процессом, естьrp - процесс – быстрый процесс захвата протона. Этот процесс создаёт протонами обогащённые ядра с Z =7-26. Он включает серию (р,γ) иβ + - распадов, которые характерны для р-обогащённых ядер. Процесс стартует как «выпадение» из CNO цикла. Это - боковая цепь CNO-цикла, создающая р-обогащённые ядра, такие как21 Na

и 19 Ne. Эти ядра создают основу для дальнейшего захвата

нейтронов, приводя к пути нуклеосинтеза, показанному на Рис. 25 . rp -процесс создаёт малое число ядер сА <100. Процесс следует по пути, аналогичному r -процессу, но на протон-обогащённой стороне стабильности. В настоящее время источником протонов

для этого процесса являются некоторые двойные звёзды. Заметим, что этот процесс временами близок к линии β стабильности, приближаясь к протоновой линии, когда ядро становится тяжелее.

6. ПРОБЛЕМА СОЛНЕЧНОГО НЕЙТРИНО

Многие ядерные реакции, обеспечивающие звёзды энергией, сопровождаются эмиссией нейтрино. Ввиду малого сечения поглощения нейтрино веществом (σ 10-44 см2 ), они практически не поглощаются Солнцем и другими звёздами. (Эти потери нейтрино соответствуют потери 2% энергии Солнца). Поэтому нейтрино – окно внутрь звезды. В тоже время, малое сечение поглощения затрудняет регистрацию нейтрино, поскольку практически все нейтрино проходят планету Земля без поглощения.

Поэтому существует проблема солнечного нейтрино. Табл. 4. Предсказанные потоки солнечного нейтрино.

Источник

Поток (част/с/см2 )

5,94x1010

1,40x108

7,88x103

4,86x107

5,82x106

5,71x108

5,03x108

5,91x106

6.1 Ожидаемые источники солнечного нейтрино, энергии и потоки

В виду своей близости к нашей планете, Солнце – основной источник достигающего Земли нейтрино.

Солнце испускает 1,8х1038 нейтрино/сек, которые через 8 мин достигают поверхности Земли с плотностью потока 6,4х1010 нейтрино/с/см2 . Предсказания стандартной солнечной модели для потоков нейтрино на поверхности Земли для различных ядерных реакций представлены вТабл. 4, а для распределения энергий - наРис. 26 . Каждая ядерная реакция имеет

характеристическое распределение энергии.

Рис. 25. Предсказание потоков нейтрино от различных ядерных реакций на Солнце. Области энергий, в которых детекторы чувствительны к нейтрино, показаны наверху.

13N → 13C+ β ++ ν e 15O → 15N+ β ++ ν e 17F → 17O+ β ++ ν e

Источник, помеченный «рр », вТабл. 4 иРис. 26 отражает реакцию

p+p→ d+e+ +ν e (65)

и является основной реакцией, производящей одно нейтрино на каждое синтезированное ядро 4 Не. «рер » источником является реакция

p+p+e- → d+ν e , (66)

которая производит моноэнергетические нейтрино, тогда как «hep» означает реакцию: p+3 He→ 4 He+e+ +ν e (67)

Эта последняя реакция производит нейтрино наивысшей энергии с максимальной энергией 18,77 МэВ (из-за высокого значенияQ реакции). Интенсивность этого источника в 107 раз меньше рр-источника. «7 Ве» источник означает рр -цепь реакции распада электронным захватом

в котором заселено первое возбуждённое состояние 8 Ве (при 3,04 МэВ). Слабые источники «13 N», «15 O» и «17 F» означаютβ + распады, происходящие в CNO цикле:

6.2 Детектирование нейтрино

Как уже упоминалось, детектирование слабо взаимодействующих нейтрино затруднено ввиду низкого значения сечения взаимодействия. Для преодоления этого препятствия предложено два типа детекторов: радиохимические детекторы и детекторы Черенкова. Радиохимические детекторы регистрируют продукты вызванных нейтрино реакций, тогда как Черенковские детекторы наблюдают рассеяние нейтрино. Так, в пещере Южной Дакоты на 1500 м ниже поверхности земли помещён массивный радиохимический детектор, содержащий 100000 галлонов очищенной жидкости, С2 Сl4 . Очищенная жидкость весила 610 тонн (объём 10 железнодорожных цистерн). В детекторе происходит следующая реакция:

ν e +37 Cl→ 37 Ar+e-

Продукт реакции 37 Ar распадается электронным захватом с Т=35 дней. После очистки жидкость экспонируется солнечным нейтрино определённый период времени, образовавшийся37 Ar вымывается из детектора потоком газообразного гелия и поступает в пропорциональный счётчик, который детектирует 2,8 электроны Оже, образовавшиеся при электронном захвате. Детектируемая реакция имеет порог 0,813 МэВ, т.е. детектор чувствителен к8 В, hep, pep и7 Be (распад основного состояния) нейтрино. Здесь наиболее важным является регистрация8 В. Обычно 3 атома37 Аr образуются за неделю и их надо изолировать от 1010 атомов жидкости. Детектор помещён глубоко под землёй и защищён от космической радиации.

Другие детекторы основаны на реакции

ν e +71 Ga→ 71 Ge+e-

Эти детекторы имеют порог 0,232 МэВ и могут быть использованы для прямого детектирования доминирующих рр нейтрино Солнца. Галлий присутствует как раствор GaCl3 .71 Ge собирают, промывая детектор азотом и конвертируя Ge в GeH4 перед счётом. Эти детекторы используют 30-100 тонн галлия и потребляют значительную долю ежегодного производства галлия.

Черенковские детекторы работают на эффекте рассеяния нейтрино заряженными частицами. После столкновения с нейтрино, выбитый электрон испускает черенковское излучение, которое можно зарегистрировать сцинтилляционными детекторами. Первый из таких детекторов был помещён в шахту Камиока в Японии. Супер Камиока содержал 50000 тонн высокочистой воды. Детектируемая реакция в этом случае – реакция рассеяния ν +e- →ν +e- , а порог детектирования 8 МэВ, что позволяет регистрировать8 В нейтрино.

Рис. 27. Сравнение предсказаний стандартной солнечной модели и экспериментальных измерений.

Канадский SNO детектор был смонтирован в никелевой шахте на глубине 2 км и содержал 1000 тонн тяжёлой воды (D2 O). В дополнении к нейтриноэлектронному рассеянию, этот детектор способен использовать ядерные реакции на дейтерии:

ν e+d→ 2p+e- (72)ν +d→ n+p+ν (73)

Последняя реакция может быть использована для регистрации всех типов нейтрино, ν е ,ν μ иν τ , тогда как первая реакция чувствительна только к электронным нейтрино. Набор протекающих в детекторе реакций можно использовать для наблюдения осцилляций нейтрино. В последней реакции, испущенный нейтрон детектируется (n ,γ) реакцией, в которой γ лучи регистрируются сцинтилляционным детектором (Тяжёловодный детектор окружён 7000 тон обычной воды, чтобы предохранить детектор от нейтронов, связанных с радиоактивностью стен шахты). Канадский детектор потребовал разработки новых методов глубокой очистки воды, т.к. чистота воды требовала содержание урана или тория менее 10 атомов на 1015 молекул воды.

6.3 Проблема солнечного нейтрино

Проблема солнечного нейтрино возникла из того факта, что детекторы зарегистрировали только 1/3 от ожидавшегося по стандартной модели солнечного нейтрино, которая предполагает, что 98,5% энергии Солнца происходит из рр -цепочки и 1,5 из CNO цикла.

Рис. 28 . Энергетические спектры галактических космических лучей, GCR.

Такое расхождение указывает, что или модель Солнца неверна или есть фундаментальные ошибки в использованной ядерной физике.

Проблема солнечного нейтрино заключается в ошибочных идеях о фундаментальной структуре вещества, задаваемых стандартной моделью. Стандартная модель предсказывает, что три типа нейтрино не имеют массы и что, будучи созданными, они продолжают существовать в неизменном виде всё остальное время. Основная идея альтернативной модели – модели осцилляции нейтрино – состоит в утверждении, что пока нейтрино выходят из Солнца, они трансформируются из электронных в мюонные нейтрино и обратно. Эти осцилляции

возможны, если нейтрино имеют массу и эта масса у электронного и мюонного нейтрино различны. Эти осцилляции усиливаются нейтрон-электронными взаимодействиями в Солнце. Полагают, что

масса τнейтрино>масса μ нейтрино>масса электронного нейтрино. Верхний предел этих масс

Рис. 29 . Относительная (по кремнию) распространённость элементов в солнечной системе и в космических лучах.

Нейтринные осцилляции - превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени. Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино. Предполагается, что такие превращения - следствие наличия у нейтрино массы покоя или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях. Стандартная модель в первоначальной версии не описывает массы нейтрино и их осцилляции, однако они могут быть включены в эту теорию с помощью сравнительно небольшой модификации - включении в общий лагранжиан массового члена и PMNS-матрицы смешивания нейтрино.

Прямое доказательство осцилляций нейтрино пришло из наблюдений черенковского свечения. SNO детектор нашёл одну треть ожидавшегося числа электронных нейтрино, приходящих из Солнца в согласии с предыдущими данными, полученными радиохимическими детекторами. Японский детектор, который чувствителен преимущественно к электронным нейтрино, но имеет

чувствительность и к другим типам нейтрино, нашёл половину от потока нейтрино, ожидавшегося из

Включайся в дискуссию
Читайте также
Сочные котлеты из свинины с рисом
Готовим макароны в мультиварке рецепты
Овощной кугель - безумно вкусно, быстро и легко!