Подпишись и читай
самые интересные
статьи первым!

Какие числа будут положительные отрицательные натуральные целые. Чтобы найти НОД необходимо. Описание изменения величин при помощи целых чисел

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Учитель высшей категории

Какие числа называются целыми?

Цели урока:

-Расширить понятие числа введением отрицательных чисел:

-Сформировать навык записи положительных и отрицательных чисел.

Задачи урока.

Образовательные – содействовать развитию умения обобщать и систематизировать, содействовать развитию математического кругозора, мышления и речи, внимания и памяти.

Воспитательные – воспитание установки на самообразование, самовоспитание, точную исполнительность, творческое отношение к деятельности, критичность мышления.

Развивающие – развивать у школьников умения сравнивать и обобщать, логически излагать мысли, развивать математический кругозор, мышление и речь, внимание и память .

Ход урока:

1. Вводная беседа.

До сих пор на уроках математики мы рассматривали какие числа?

-Натуральные и дробные.

Какие числа называются натуральными?

- Это числа используемые при счете предметов.

Сколько их можете сказать?

- бесконечно много.

Ноль является натуральным числом? Почему?

-Для чего нужны дробные числа?

-Мы не только считаем предметы, но части некоторых величин.

Какие дроби вы знаете?

- Обыкновенные и десятичные.

Задание № 1.

Среди чисел назовите натуральные? Обыкновенные дроби? Десятичные дроби?

10; 1,1; https://pandia.ru/text/77/504/images/image002_2.png" width="16" height="35 src=">; https://pandia.ru/text/77/504/images/image004_0.png" width="24" height="35 src=">.

2. Объяснение нового материала:

Однако в жизни вы уже наверняка встречались и с другими числами, какими? Где?

-Отрицательными. Например, в сводке погоды.

Перед тем, как перейти к изучению новой темы, давайте обсудим знаки, которые помогут в расширении множества чисел. Это знаки плюс и минус. Подумайте, с чем же в жизни ассоциируются эти знаки. Это может быть все, что угодно: белое - черное, хорошее – плохое. Ваши примеры мы запишем в виде таблицы.

Как много мыслей вызывают всего два знака. На самом деле эти два знака дают возможность идти в разные стороны. Такие числа, «похожие» на натуральные, но со знаком минус, нужны в тех случаях, когда величина может меняться в двух противоположных направлениях. Для выражения величины отрицательным числом вводят некоторую начальную, нулевую отметку. Посмотрим примеры, которые сделали другие, а дома подумаете и сделаем свою презентацию. Слайд № 2-7.

Использование знака очень удобно. Его использование принято во всем мире. Но так было не всегда. Слайд №8.

Итак, наряду с натуральными числами

1, 2, 3, 4, 5, …100, …, 1000, …

Мы будем рассматривать отрицательные числа, каждое из которых получается приписыванием к соответствующему натуральному числу знака минус:

-1,- 2, - 3, - 4, - 5, …-100, …,- 1000, …

Натуральное число и соответствующее ему отрицательное число называют противоположными. Например, числа15 и -15. Можно -15 и 15. О противоположен себе.

Правило: Натуральные числа, противоположные им отрицательные и число 0 называют целыми числами. Все эти числа вместе составляют множество целых чисел.

Откройте учебник стр 159, найдите правило, прочитайте еще раз, дома его учим наизусть.

Натуральное число принято называть также положительным целым, т е это одно и то же. Перед ним, для того чтобы подчеркнуть внешнее отличие от отрицательного, иногда ставится знак плюс. +5=5.

3. Формирование умений и навыков:

1) № 000.

2) Выпишите данные числа в две группы: положительные и отрицательные:

-15, 7, 28, -41, 0, 382, -591, -999, 2000.

3) Игра «мое настроение».

Сейчас выбудете оценивать свое настроение в настоящий момент по следующей шкале:

Хорошее настроение: +1, +2, +3, +4, +5.

Плохое настроение: -1, -2, -3, -4, -5.

Один человек будет писать результаты на доске, а все остальные будут вслух по очереди говорить: «У меня хорошее настроение на4балла»

4) Игра « хлопушка»

Я буду называть пары чисел, если пара является противоположной, то вы хлопаете в ладоши, если же нет, то в классе должна быть тишина:

5 и -5; 6 и 0,6; -300 и 300; 3 и 1/3; 8 и 80; 14 и -14; 5/7 и 7/5; -1 и 1.

5) Пропедевтика изучения сложения целых чисел:

№ 000 (а).

Решение смотрим с помощью презентации. Слайд №8.

4. Итоги урока:

-Какие числа называются положительными? Отрицательными?

-Что узнали про о?

- Для чего нужны отрицательные числа?

-Как записываются положительные и отрицательные числа?

5. Д/З: п. 8.1, № 000, 721(б), 715(б). Творческое задание: сочинить стих про целые числа, рисунок, презентацию, сказку.

Из цифры вычтем мы другую,
Ставим черточку прямую.
Этот знак мы узнаем,
"Минус" мы его зовем.
1.
Стоит единичка,
Похожа на спичку.
Она просто черточка
С маленькой челочкой.

2.
По воде скользит едва,
Словно лебедь, цифра два.
Шею выгнула дугой,
Гонит волны за собой.

3.
Два крючочка, посмотри,
Получилась цифра три.
Но на эти два крючка
Не насадишь червячка.

4.
Вилку как-то уронили,
Один зубчик отломили.
Вилка эта в целом мире
Называется "четыре".

5.
Цифра пять - с большим брюшком,
Носит кепку с козырьком.
В школе эту цифру пять
Дети любят получать.

6.
Что за вишенка, дружок,
Кверху загнут стебелек?
Ты ее попробуй съесть,
Эта вишня - цифра шесть.

7.
Я такую кочергу
Сунуть в печку не смогу.
Про нее известно всем,
Что она зовется "семь".

8.
Вилась веревочка, вилась,
В две петельки заплелась.
"Что за цифра?" - маму спросим.
Мама нам ответит: "Восемь".

9.
Ветер сильный дул и дул,
Вишенку перевернул.
Цифра шесть, скажи на милость,
В цифру девять превратилась.

10.
Словно старшая сестричка,
Ведет нолик единичка.
Только вместе пошагали,
Сразу цифрой десять стали.

Стихи о математике

Математика – основа и царица всех наук,
И тебе с ней подружиться я советую, мой друг.
Ее мудрые законы если будешь выполнять,
Свои знанья приумножишь,
Станешь ты их применять.
Сможешь по морю ты плавать,
Сможешь в космосе летать.
Дом построить людям сможешь:
Будет он сто лет стоять.
Не ленись, трудись, старайся,
Познавая соль наук
Все доказывать пытайся,
Но не покладая рук.
Станет пусть бином Ньютона
Для тебя, как друг родной,
Как в футболе Марадонна,
В алгебре он основной.
Синус, косинус и тангенс
Должен знать ты на зубок.
И конечно же котангенс,–
Это точно, мой дружок.
Если это все изучишь,
Если твердо будешь знать,
То, возможно, ты сумеешь
Звезды в небе сосчитать
Саушкина Яна, 8 класс
Люблю я математику,
Не так она сложна,
И нет там в ней грамматики,
И всем она нужна.
По алгебре проходим мы
Координаты, ось,
Куда идет прямая,
Прямо или вкось.
Сложение квадратов,
Деление корней,
И что получится при этом,
Узнаем только в ней.
Фигур найдешь симметрию,
Взяв в руки геометрию.

Аржникова Светлана,
8 класс

Сложная наука математика:
Нужно здесь делить и умножать.
Это не ИЗО и не грамматика,
Много надо тут запоминать.
Это не труды, не биология,
Формул много нужно применять.
Это не рассказ и не трилогия,
Можно здесь из чисел вычитать.
Это не английский и не музыка,
Умная наука, но трудна.
Сложная наука математика –
Пригодится в жизни нам она.

Разборов Роман,
8 класс

Скорость свою найти
И рассчитать пути
Сможет тебе помочь
Лишь математика.
Есть у меня тетрадь,
Только вот что скрывать:
Часто бывает лень
Что-то в нее вписать.
Даром преподаватели
Время со мною тратили,
Даром со мною мучались,
Время теряли зря.
Мудрых преподавателей
Слушал я невнимательно,
Если что было задано,
Не выполнял ведь я.
Сделать хотел квадрат,
Но был и сам не рад:
Стороны измерял,
В градусах записал.
Вместо сторон – углы,
А на углах круги.
Я б не хотел сейчас
Это решать опять.
Стал вырезать я круг,
Ромб получился вдруг,
Радиус не нашел,
Диагональ провел.
Ночью приснился сон:
Круг плачет, плачет он.
Плачет и говорит:
“Что с нами сделал ты?”

,
учитель математики

Раз, два, три, четыре, пять,
Встали цифры дружно в ряд.
Будем мы сейчас считать:
Складывать и умножать.
Дважды два равно четыре;
Дважды три, конечно, шесть.
Знает каждый во всем мире,
Сколько будет два плюс шесть.
А теперь сравнить мы можем,
Что же больше: два иль семь?
В этом правило поможет
Тот ответ найти нам всем.
С математикой мы будем
Крепко-накрепко дружить,
Никогда мы не забудем
Этой дружбой дорожить.

Витютнева Марина,

· Много из математики не остается в памяти, но когда поймешь ее, тогда легко при случае вспомнить забытое.

Словосочетание «числовые множества » довольно часто встречается в учебниках математики. Там очень часто можно встретить фразы такого плана:

«Бла-бла-бла, где принадлежит множеству натуральных чисел».

Частенько вместо окончания фразы можно увидеть вот такую запись . Она означает то же что и текст немного выше — число принадлежит множеству натуральных чисел. Многие довольно часто не придают внимания в каком множестве определена та или иная переменная. В результате применяться совершенно неверные методы при решении задачи или доказательстве теоремы. Это происходит из-за того, что свойства чисел принадлежащих различным множествам могут иметь различия.

Числовых множеств не так уж и много. Ниже можно увидеть определения различных числовых множеств.

Множество натуральных чисел включает в себя все целые числа больше нуля — положительные целые числа.

Например: 1, 3, 20, 3057. Множество не включает в себя цифру 0.

В это числовое множество входят все целые числа больше и меньше нуля, а так же ноль .

Например: -15, 0, 139.

Рациональные числа, вообще говоря, представляют собой множество дробей, которые не сокращаются (если дробь сокращается, то это уже будет целое число, и для этого случая не стоит вводить еще одно числовое множество).

Пример чисел входящих в рациональное множество: 3/5, 9/7, 1/2.

,

где – конечная последовательность цифр целой части числа, принадлежащего множеству вещественных чисел. Эта последовательность является конечной, то есть количество цифр в целофй части вещественного числа конечное количество.

– бесконечная последовательность чисел, стоящих в дробной части вещественного числа. Выходит, что в дробной части присутствует бесконечное количество чисел.

Такие числа невозможно представить в виде дроби. В противном случае, подобное число можно было бы отнести к множеству рациональных чисел.

Примеры вещественных чисел:

Давайте рассмотрим значение корня из двух внимательнее. В целочисленной части представлена только одна цифра — 1, поэтому мы можем записать:

В дробной части (после точки) последовательно идут числа 4, 1, 4, 2 и так далее. Поэтому для первых четырех цифр можно записать:

Смею надеяться, что теперь запись определения множества вещественных чисел стала понятней.

Заключение

Следует помнить, что одна и та же функция может проявлять совершенно разные свойства в зависимости от того к какому множеству будет принадлежать переменная. Так что помните основы – они вам пригодятся.

Post Views: 5 198

Что значит целое число

Итак, рассмотрим, какие числа называют целыми.

Таким образом, целыми будут обозначаться такие числа: $0$, $±1$, $±2$, $±3$, $±4$ и т.д.

Множество натуральных чисел есть подмножеством множества целых чисел, т.е. любое натуральное будет являться целым числом, но не любое целое является натуральным числом.

Целые положительные и целые отрицательные числа

Определение 2

плюс .

Числа $3, 78, 569, 10450$ – целые положительные числа.

Определение 3

являются целые числа со знаком минус .

Числа $−3, −78, −569, -10450$ – целые отрицательные числа.

Замечание 1

Число ноль не относится ни к целым положительным, ни к целым отрицательным числам.

Целыми положительными числами являются целые числа, большие нуля.

Целыми отрицательными числами являются целые числа, меньшие нуля.

Множество натуральных целых чисел являет собой множество всех целых положительных чисел, а множество всех противоположных натуральным числам являет собой множество всех целых отрицательных чисел.

Целые неположительные и целые неотрицательные числа

Все целые положительные числа и число нуль называются целыми неотрицательными числами .

Целыми неположительными числами являются все целые отрицательные числа и число $0$.

Замечание 2

Таким образом, целым неотрицательным числом являются целые числа, большие нуля или равные нулю, а целым неположительным числом – целые числа, меньшие нуля или равные нулю.

Например, целые неположительные числа: $−32, −123, 0, −5$, а целые неотрицательные числа: $54, 123, 0, 856 342.$

Описание изменения величин при помощи целых чисел

Целые числа применяются для описания изменения числа каких-либо предметов.

Рассмотрим примеры.

Пример 1

Пусть в магазине продается какое-то число наименований товара. Когда в магазин поступит $520$ наименований товаров, то число наименований товара в магазине увеличится, а число $520$ показывает изменение числа в положительную сторону. Когда в магазине продастся $50$ наименований товара, то число наименований товара в магазине уменьшится, а число $50$ будет выражать изменение числа в отрицательную сторону. Если в магазин не будут ни привозить, ни продавать товар, то число товара будет оставаться неизменным (т.е. можно говорить о нулевом изменении числа).

В приведенном примере изменение числа товара описывается с помощью целых чисел $520$, $−50$ и $0$ соответственно. Положительное значение целого числа $520$ указывает на изменение числа в положительную сторону. Отрицательное значение целого числа $−50$ указывает на изменение числа в отрицательную сторону. Целое число $0$ указывает на неизменность числа.

Целые числа удобно использовать, т.к. не нужно явное указание на увеличение числа или уменьшение, – знак целого числа указывает на направление изменения, а значение – на количественное изменение.

С помощью целых чисел можно выразить не только изменение количества, но и изменение любой величины.

Рассмотрим пример изменения стоимости товара.

Пример 2

Повышение стоимости, например, на $20$ рублей выражается с помощью положительного целого числа $20$. Понижение стоимости, например, на $5$ рублей описывается с помощью отрицательного целого числа $−5$. Если изменений стоимости нет, то такое изменение определяется с помощью целого числа $0$.

Отдельно рассмотрим значение отрицательных целых чисел как размера долга.

Пример 3

Например, у какого-либо человека есть $5 000$ рублей. Тогда с помощью целого положительного числа $5 000$ можно показать количество рублей, которые у него есть. Человек должен оплатить квартплату в размере $7 000$ рублей, но у него таких денег нет, в таком случае подобная ситуация описывается отрицательным целым числом $−7 000$. В таком случае человек имеет $−7 000$ рублей, где «–» указывает на долг, а число $7 000$ показывает количество долга.

Если к ряду натуральных чисел приписать слева число 0, то получится ряд положительных целых чисел :

0, 1, 2, 3, 4, 5, 6, 7, ...

Целые отрицательные числа

Рассмотрим небольшой пример. На рисунке слева изображён термометр, который показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания:

Если температура понизится на 7°, то термометр будет показывать 0°. Уменьшению температуры соответствует действие вычитания:

Если же температура понизится на 8°, то термометр покажет -1° (1° мороза). Но результат вычитания 7 - 8 нельзя записать с помощью натуральных чисел и нуля.

Проиллюстрируем вычитание на ряде целых положительных чисел:

1) От числа 7 отсчитаем влево 4 числа и получим 3:

2) От числа 7 отсчитаем влево 7 чисел и получим 0:

Отсчитать в ряду положительных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 - 8 стало выполнимым, расширим ряд положительных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак - , показывающий, что это число стоит слева от нуля.

Записи -1, -2, -3, ... читают минус 1 , минус 2 , минус 3 и т. д.:

5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

Полученный ряд чисел называют рядом целых чисел . Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными (кратко - положительными ).

Слева от числа 0 в этом ряду расположены числа, которые называют целыми отрицательными (кратко - отрицательными ).

Число 0 целое, но не является ни положительным, ни отрицательным числом. Оно разделяет положительные и отрицательные числа.

Следовательно, ряд целых чисел состоит из целых отрицательных чисел, нуля и целых положительных чисел .

Сравнение целых чисел

Сравнить два целых числа - значит узнать какое из них больше, какое меньше, или определить, что числа равны.

Сравнивать целые числа можно с помощью ряда целых чисел, так как числа в нём расположены от меньшего к большему, если двигаться по ряду слева направо. Поэтому в ряду целых чисел можно заменить запятые на знак меньше:

5 < -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < 4 < 5 < ...

Следовательно, из двух целых чисел больше то число, которое в ряду стоит правее, и меньше то, которое стоит левее , значит:

1) Любое положительное число больше нуля и больше любого отрицательного числа:

1 > 0; 15 > -16

2) Любое отрицательное число меньше нуля:

7 < 0; -357 < 0

3) Из двух отрицательных чисел больше то, которое в ряду целых чисел стоит правее.

Включайся в дискуссию
Читайте также
Как построить координатный луч Как определить координаты на числовом луче
Единичный отрезок, координаты
Дроби обыкновенные правильные и неправильные, смешанные и составные