Подпишись и читай
самые интересные
статьи первым!

Примитивные и сложные кристаллические структуры. Кристаллическое строение металлов. Кристаллическая решетка металлов. Основные типы кристаллических структур

Лекция 10

Структура твердых тел. Принципы описания кристаллических структур

Большая часть окружающих нас веществ находится в твердом состоянии. Некоторые твердые тела обладают блеском и поддаются деформации в холодном состоянии ‑ их относят к металлам. Другие представляют собой кристаллы с правильными кристаллическими гранями и четкими плоскостями скалывания, некоторые из них относят к солям, или ионным кристаллам, а некоторые ‑ к ковалентным кристаллам. Ряд других твердых тел мягки и сохраняют многие свойства молекул газа, из которого они сконденсировались, ‑ это молекулярные кристаллы.

Наблюдаемая кристаллическая структура твердых тел (расположение атомов в элементарной ячейке) определяется положением минимума энергии системы как функции координат центров атомов. В общем случае эта минимизация требует проведения квантовохимических расчетов для набора возможных положений атомов и, таким образом, является довольно сложной математической процедурой. Однако в ряде случаев (при ненаправленных ненасыщаемых силах межатомных взаимодействий ‑ в чисто ионных, ван-дер-ваальсовых или металлических кристаллах) описание структуры кристаллов может быть существенно упрощено, если рассматривать атомы как жесткие шары с определенными (характерными для данного атома в данном зарядовом состоянии при данном типе межатомного взаимодействия) радиусами. Такой подход при своей очевидной приближенности, как было показано ранее, для кристаллов с ионной и ван-дер-ваальсовой связями может быть оправдан резким возрастанием энергии взаимного отталкивания при сближении атомов до состояния заметного перекрывания электронных оболочек и малостью этой энергии на больших межатомных расстояниях.


Твердые тела в отличие от жидких и газообразных характеризуются сопротивлением сдвиговым деформациям, что позволяет веществу сохранять форму под действием внешних сил. Указанная особенность тесно связана с дальнодействующей природой межатомного взаимодействия, приводящего к упорядоченному расположению частиц (атомов, молекул или ионов), из которых составлено твердое тело. Максимальная степень порядка - дальний порядок, т. е. строго периодическое повторение правильного расположения частиц в любой точке твердого тела, реализуется в кристаллах, тогда как аморфным твердым телам присущ лишь ближ ний порядок ‑ закономерное расположение частиц на расстояниях, не превышающих нескольких межатомных. Как следствие, переход аморфных твердых тел в жидкое состояние в отличие от кристаллов совершается непрерывно, и в этом смысле аморфные тела (например, стекла) иногда рассматривают как переохлажденные жидкости.

Рассмотрим три класса веществ: молекулярные кристаллы, ковалентные кристаллы и металлы.

На рисунке 1 показано, к какому из этих классов относятся кристаллы элементов периодической системы. Имеется лишь 15 элементов, которые, несомненно, дают молекулярные кристаллы (в верхней правой части таблицы), и около 70 элементов металлов (слева в таблице). Между металлами и молекулярными кристаллами находятся элементы, которые включают ковалентные кристаллы, а также некоторые твердые тела, которые трудно отнести к определенному классу. Некоторые элементы (например, мышьяк и сурьма) имеют как молекулярные, так и металлические формы. Фосфор также дает и ковалентные и молекулярные кристаллы. Эти пограничные элементы особенно важны благодаря своему промежуточному характеру, и мы уделим им особое внимание.

Соединения двух различных неметаллов всегда образуют молекулярные или ковалентные кристаллы. Соединение металла и неметалла обычно образует ионный или ковалентный кристалл. Два металла могут образовывать одно и более металлических соединений или (что бывает чаще) целый ряд металлических растворов, где один элемент растворен в другом.

Закономерности строения неметаллических кристаллов описывает правило (8- N ) Юм-Розери, согласно которому координационное число атома (количество связей, которыми атом связан с ближайшими атомами) КЧ= 8 ‑ N , где N ‑ номер группы в короткопериодном варианте таблицы Менделеева.

Поскольку в основе правила лежат представления об устойчивости электронного октета и электронной паре, осуществляющей единичную ковалентную связь, то правило справедливо лишь для элементов главных подгрупп начиная с IV группы.

Например, в кристаллах элементов 6-й группы (S, Se) КЧ =8 - 6=2; таким образом, в структуре будут присутствовать или кольцевые молекулы (S8 в ромбической и моноклинной сере), или длинные полимерные цепи (S¥ в пластической сере и в селене). Атомы в кольцах и цепях связаны между собой ковалентными связями, а между цепями и кольцами действуют ван-дер-ваальсовы силы.

Для кристаллов элементов VII группы КЧ=8-7=1, что приводит к кристаллу, состоящему из двухатомных молекул, например I2. Атомы в молекуле связаны ковалентной связью, а молекулы объединены в кристалл ван-дер-ваальсовыми силами.


Однако далеко не все элементарные кристаллы имеют молекулярный тип связи. Видно, что только в случае элементов IV главной подгруппы (более точно у С, Si, Ge) могут образовываться кристаллы с исключительно ковалентной связью, поскольку координационного числа 4, которое выводится из правила 8 ‑ N , достаточно, чтобы связать все атомы кристалла трехмерной сеткой ковалентных связей. Главная особенность таких элементарных кристаллов ‑ склонность к полиморфизму и, как следствие, многообразие проявляемых ими свойств (рисунок 2). Стабильные модификации указанных элементов - ковалентные кристаллы с высокими значениями механических характеристик (модуля Юнга, модуля сдвига, прочности, твердости), а также высокими температурами плавления и кипения. Типичный пример: кремний, в кристаллической решетке которого (ее еще называют алмазной решеткой) каждый атом, находящийся в состоянии sp3-гибридизации, окружен тетраэдром из соседних атомов кремния. Подобная жесткая трехмерная сетка тетраэдрических связей обеспечивает высокую устойчивость кристаллической решетке. Кристаллический кремний имеет высокую температуру плавления (1420 °С) и кипения (ЗЗ00 °С), исключительную прочность и химическую стойкость (нерастворим в воде и растворах кислот).

Мы уже сказали, что большинство простых и сложных веществ в обычных условиях представляют собой твердые тела. Одной из важнейших задач химии твердого тела является установление взаимосвязи структуры твердых тел с их свойствами.

Напомню, что кристаллическая структура – это конкретное расположение атомов в кристалле. Это расположение усреднено по времени и пространству и отвечает среднестатистическим максимумам электронной или ядерной плотности кристалла.

Идеализированная математическая форма расположения атомов в кристалле, описанная набором атомных позиций в рамках кристаллической решетки и одной из 230 пространственных групп симметрии, соответствует идеальной структуре. Различают полностью упорядоченные структуры, в которых каждая атомная позиция нацело заселена атомами одного сорта, и разупорядоченные структуры, где присутствуют атомные позиции, не полностью заселенные односортными атомами. Разные аспекты кристаллической структуры рассматривают в рамках различных моделей структуры. Локальные особенности микроструктуры кристалла отвечают реальной структуре. Экспериментально кристаллическую структуру определяют методами структурного анализа.

Кристаллическая структура (внутреннее строение) обуславливает многогранную форму кристалла (внешнее строение).

Кристалл – твердое тело, отличающееся присутствием как ближнего, так и дальнего порядка. Это равновесная форма твердого состояния вещества.

Для всех без исключения кристаллов характерно решетчатое строение. Чтобы представить себе такую решетку, мысленно заполни пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет кладка из кирпичиков, вплотную приложенных друг к другу. Если внутри каждого параллелепипеда выделить соответственные точки (например, их центры тяжести или вершины), мы получим модель пространственной решетки. В конкретных кристаллических структурах места узлов пространственной решетки могут заполнять отдельные атомы или ионы, или же группы атомов – молекулы. Прямые линии, по которым расположены частицы в решетке, называются рядами, а плоскости, усаженные частицами, называются плоскими сетками . Плоские сетки, ряды, вершины соответствуют граням, ребрам кристалла.

Кристаллическая решетка – это трехмернопространственное расположение материальных частиц (атомов, ионов, молекул), слагающих кристалл.

Условно эквивалентность координатных направлений можно показать в виде единичных векторов – масштабов а, в, с – по соответствующим координатным осям X, Y, Z.

Три возможности соотношения единичных векторов – а = в = с, а = в ≠ с, а ¹ в ¹ с – позволяют разделить кристаллографические координатные системы на три группы – три категории кристаллов :

· кристаллы высшей категории (а = в = с) характеризуются полной эквивалентностью координатных осей, что связано с присутствием в группах симметрии таких кристаллов нескольких осей высшего порядка;

· кристаллы средней категории (а = в ≠ с) характеризуются частичной эквивалентностью координатных осей, связанной с присутствием в их группах лишь одной оси высшего порядка;

· кристаллы низшей категории (а ≠ в ≠ с) характеризуются полной неэквивалентностью координатных направлений, которая объясняется отсутствием в них осей высшего порядка.

Рассмотрев угловые соотношения в каждой из перечисленных категорий, можно вывести все кристаллографические координатные системы (сингонии).

Классы симметрии с единым координатным репером объединяются в семейство, называемое сингонией, или системой.

Всего существует 32 различные кристаллографические точечные группы, в которые входят разные комбинации закрытых операций симметрии. Эти точечные группы классифицированы по их принадлежности к кристаллографическим системам.

Кристаллографическая

Соотношения между ребрами элементарной ячейки

Точечные группы

Триклинная

а ≠ в ≠ с

a ≠ b ≠ g ≠ 90°

Моноклинная

а ≠ в ≠ с

a = b = 90° ≠ g

2, (только в одном направлении вдоль оси Z). m

Ортогональная (орторомбическая)

а ≠ в ≠ с

a = b = g = 90°

Тетрагональная

a = b = g = 90°

4, , 4/m, 422, 4mm, 2m, 4/mmm (ось 4-го порядка проходит только вдоль оси Z)

Тригональная и гексагональная

6, , 6/m, 622, 6mm, m2, 6/mmm (ось 3-го (6-го) порядка проходит только вдоль оси Z)

Кубическая

a = b = g = 90°

23, m3, 432, 4m, m3m (4 оси 3-го порядка проходят по объемным диагоналям элементарной ячейки)

Система эквивалентных позиций – это совокупность точек, которые переводятся друг в друга элементами симметрии данной точечной группы.

Число точек, входящих в данную СЭП, называется кратностью системы или кратностью позиций. Или – кратность – это число точек, получаемых размножением их элементами симметрии.

Позиция называется частной , если точка расположена на каком-либо элементе симметрии: на оси, на плоскости симметрии, в особой точке инверсии, в центре симметрии.

Позиция называется общей , если точка не находится на элементе симметрии.

Атомы в кристалле могут быть связаны не только закрытыми элементами симметрии, но и открытыми элементами симметрии.

Совокупность трех некомпланарных векторов называют трансляционной группой или решеткой кристалла.

Векторы а, b , с называют векторами переноса или трансляциями, а их модули – периодами идентичности решетки.

Параллелепипед, построенный на векторах а, b , с, называют параллелепипедом повторяемости решетки.

Составляющими элементами решетки являются ее узлы, узловые ряды и узловые сетки.

Пространственная решетка – это геометрический образ, отражающий трехмерную периодичность распределения атомов в структуре кристалла.

Решетка задается по какому-нибудь одному сорту атомов.

Чтобы задать решетку, нужно выбрать параллелепипед, который бы наиболее полно отражал все особенности данной решетки, являясь ее минимальным звеном, т. е. нужно выбрать элементарную ячейку.

Элементарная ячейка – параллелепипед повторяемости, построенный на кратчайших трансляциях вдоль кристаллографических систем координат.

Три возможных соотношения векторов – a = b = c , a = b ¹ c , a ¹ b ¹ c – позволяют разделить кристаллографические координатные системы, а следовательно, и 32 класса симметрии на три категории кристаллов:

1. кристаллы низшей категории (a ¹ b ¹ c ) характеризуются полной неэквивалентностью координатных направлений, которая объясняется отсутствием в них осей высшего порядка. Из условия неэквивалентности координатных направлений следует, что к низшей категории относятся только классы, не имеющий осей высшего порядка..gif" width="13" height="20 src=">) или полное отсутствие элементов симметрии (1).

2. кристаллы средней категории (a = b ¹ c ) характеризуются частичной эквивалентностью координатных осей, связанной с присутствием в их группах симметрии лишь одной оси высшего порядка. Из условия эквивалентности двух горизонтальных направлений (a = b) следует, что симметрия кристаллов средней категории описывается группами с единственной осью высшего порядка: . С этой осью совмещают вертикальную координатную ось z , а две другие – x и y – выбирают в плоскости, перпендикулярной главной оси. Поэтому углы между главной осью и осями x и y прямые, т. е. a = b = 90°. Угол g между осями x и y определяется порядком главной оси и равен 90° в случае присутствия оси 4-го порядка и 120° ‑ в случае осей 3-го и 6-го порядков. Поэтому в средней категории выделяют две координатные системы, которым соответствуют две сингонии.

3. кристаллы высшей категории (a = b = c ) характеризуются полной эквивалентностью координатных осей, что связано с присутствием в их группах симметрии нескольких осей высшего порядка.

Итак, на этих трех трансляциях можно построить элементарный параллелепипед – элементарную ячейку. Параметры a , b , c , a , b , g - параметры элементарной ячейки.

Напомню правила выбора элементарной ячейки (правила выбора кристаллографических осей координат) .

1. Выбранная ячейка должна иметь симметрию решетки.

2. Кристаллографические оси направлены вдоль узловых рядов.

3. Кристаллографические оси координат совмещают с особыми направлениями, т. е. с осями симметрии 2-го порядка и выше (при наличии таковых).

4. При прочих равных условиях элементарная ячейка должна иметь минимальный объем.

Если в трехмерном пространстве выбрать какую-либо точку (не обязательно материальную) и посчитать ее одним из узлов решетки, то в остальных ее узлах окажутся все точки этого пространства, идентичные (физически и геометрически) исходной.

В этом смысле решетка это выразитель кристаллического состояния вещества , ибо любое кристаллическое вещество, даже лишенное каких-либо иных элементов симметрии, всегда обладает этим основным элементом симметрии ‑ решеткой, или решетчатым строением.

Как и всякая параллелепипедальная система, трехмерная решетка обладает рядом собственных симметрийных особенностей. Она всегда центросимметрична, при этом центры инверсии находятся как в узлах решетки ‑ в вершинах параллелепипедов, так и на серединах расстояний между ними. Оси высших порядков неизбежно сопровождаются пересекающимися вдоль них плоскостями симметрии. Сами же оси симметрии ограничены только кристаллографическими порядками, т. е. n = 1, 2, 3, 4, 6. Последнее условие однозначно выбирает из бесконечного числа точечных групп, описывающих симметрию конечных исходных фигур, лишь 32 кристаллографические точечные группы.

Точечные группы симметрии решетки как геометрического образа отвечают старшему - голоэдрическому - классу каждой сингонии .

Трехмерная решетка может быть представлена тремя некомпланарными трансляционными векторами, а значит построенный на этих векторах параллелепипед ‑ параллелепипед повторяемости ‑ будет ячейкой решетки . Для того чтобы параллелепипед мог служить характеристической ячейкой какой-либо решетки, т. е. отражал бы ее главные симметрийные особенности, необходимо, чтобы его ребра (трансляционные векторы) совпали с особыми направлениями максимальной симметрии, т. е. с направлениями кристаллографических координатных осей. Ячейку, выбранную таким образом, называют ячейкой Браве или элементарной ячейкой . Тип и симметрия ячейки отражаются в ее названии, которое она передает и соответствующей ей пространственной решетке (рисунок 3). Поскольку форму ячейки Браве определяет координатный репер, семь разных по симметрии решеток (, , mmm, https://pandia.ru/text/80/189/images/image013_92.gif" width="46" height="41 src=">.gif" width="14" height="19 src=">m ) могут быть представлены шестью типами параллелепипедов (ибо гексагональные решетки обслуживаются одним и тем же координатным репером, а значит, и одинаковыми по форме ячейками Браве ‑ параллелепипедами со 120-градусным ромбом в основании).

Чтобы охарактеризовать тип решетки, необходимо и достаточно указать два ее признака:

1. кристаллографическую систему;

2. тип «центрирования» ячейки.

Элементарные ячейки могут быть:

1. примитивными – узлами являются лишь вершины ячейки;

2. центрированными – есть дополнительные узлы, не лежащие в вершинах ячейки.

Рисунок 3 – Типы решеток Бравэ

Если кристаллографические оси выбраны правильно, то дополнительные узлы возможны не в любом месте, а только в строго определенных позициях. При этом число возможных вариантов невелико. Непримитивные решетки называются центрированными.

Непримитивные (центрированные) решетки могут быть типа:

I ‑ объемноцентрированная (узел находится в центре объема)

С (А, В) – базоцентрированная (центрированы две противоположные грани)

F – гранецентрированная (дополнительные узлы находятся в центрах всех граней)

R – дважды объемноцентрированная (два дополнительных узла делят объемную диагональ на три равные части)

Правила, определяющие выбор координатных систем в группах разных кристаллографических систем (сингоний), по-разному ограничивают и способы центровки их решеток.

Для описания симметрии кристаллических структур пользуются понятием «пространственная группа».

Совокупность элементов симметрии кристаллической структуры называется пространственной группой.

Описать структуру это значит указать:

2) тип решетки Бравэ;

3) тип химической формулы;

4) КЧ и координационные полиэдры;

5) число формульных единиц и т. д.

6) характеристику структуры по типу химической связи;

7)характеристику структуры по геометрическому признаку;

8) структуру в терминах ПШУ-ПШК;

9) базисные координаты атомов;

10) пространственную группу и структурный тип.

Структура металлов наряду со структурой неметаллических элементарных кристаллов представлена на рисунке 4.

В нижней строчке каждого квадрата указана форма, стабильная при комнатной температуре, а выше следуют формы, реализующиеся при более высоких температурах.

Аббревиатура ГЦК обозначает гранецентрированную кубическую структуру с плотнейшей упаковкой атомов, ОЦК ‑ объемно-центрированную кубическую структуру, ГПУ ‑ гексагональную структуру с плотнейшей упаковкой атомов.

Структуры ГЦК и ГПУ нагляднее всего описываются в рамках модели плотнейших шаровых упаковок (ПУ), впервые предложенной в 1926 г. В. Гольдшмидтом. Атомы представляются в виде жестких шаров, и в плоскости имеется единственный вариант их плотного расположения (рисунок 5 а).

Если второй слой поместить так, что его шары окажутся расположенными в углублениях первого слоя, то плотнейшая упаковка достраивается, причем также единственно возможным способом (рисунок 5 б). Что касается шаров третьего слоя, то их можно расположить двумя способами:

1) шары третьего слоя над шарами первого, шары четвертого над шарами второго и т. д., так что чередующиеся слои соответствуют последовательности АВАВАВАВ (где буквы А и В обозначают плотноуложенные слои, сдвинутые друг относительно друга в горизонтальной плоскости), а способ укладки отвечает гексагональной плотнейшей упаковке (ГПУ) (рисунок 6, а);

2) шары третьего слоя по отношению к шарам второго слоя расположены так, что не находятся над шарами первого слоя.

Тогда четвертый слой повторяет первый, второй повторяет пятый и т. д. Чередование слоев соответствует АВСАВС... ABC, а способ укладки отвечает кубической плотнейшей упаковке (ГЦК) (рисунок 6, б). В структуре ГПУ упаковки шаров в плоскости слоя и по вертикали к нему различны, а в структуре ГЦК упаковка одинакова в любой из трех основных плоскостей куба (т. е. менее анизотропна). Несмотря на различия, эти два типа плотнейших шаровых упаковок демонстрируют общие черты:

1) доля пространства, занятого шарами, ‑ коэффициент заполнения, в обоих случаях равен 74,05%;

2) координационное число атома составляет 12;

3) в обеих упаковках имеется два типа пустот ‑ тетраэдрические, образованные четырьмя соприкасающимися шарами, и октаэдрические, соответственно образованные шестью шарами; в тетраэдрическую пустоту может поместиться шарик с радиусом r тетр = 0,225 r , а в октаэдрическую шарик с радиусом r окт =0,414 r , где r - радиус шаров, из которых составлена плотнейшая упаковка;

4) в плотнейших упаковках в расчете на один шар приходится одна октаэдрическая и две тетраэдрических пустоты.

В концепции плотнейших упаковок полиморфизм рассматривается как отличный от ГЦК и ГПУ порядок чередования плотноупакованных слоев.

В качестве примера можно привести последовательность слоев в четырехслойной гексагональной упаковке...АВСВАВСВ... (обозначается как 4Н).

Из шаровых упаковок с меньшей плотностью наиболее часто встречается объемноцентрированная кубическая упаковка (ОЦК), для которой коэффициент заполнения составляет 68,01%.

Упаковку этого типа можно получить, если шары одинакового размера разместить на плоскости так, чтобы образовалось их квадратное расположение, тогда шары второго слоя следует расположить в углублениях, образованных шарами первого слоя (рисунок 7), шары третьего слоя будут повторять первый и т. д. Как и в случае структуры ГПУ, чередование слоев отвечает последовательности АВАВ...АВ, однако каждый из слоев не является плотноупакованным; в отличие от ГЦК и ГПУ, где координационное число атомов равно 12, рассматриваемая структура имеет координационное число 8.

Рисунок 7 – Объемноцентрированная кубическая решетка

Легко видеть, что для металлов характерен полиморфизм (аллотропия) (рисунок 2), причем достаточно незначительного изменения в электронной структуре атомов, чтобы произошла перестройка кристаллической решетки. Теплота взаимного перехода между структурами ГЦК и ГПУ не превышает 1 кДж/моль, тогда как теплота плавления составляет от 10 до 40 кДж/моль.

Подавляющее большинство металлов имеет одну из трех структур (ГЦК, ОЦК, ГПУ), a Mn, Ga, In, Hg ‑ аналогичные, но искаженные структуры. Между типом структуры и положением металла в периодической системе Менделеева трудно обнаружить простые закономерности. Тем не менее очевидно, что повышение числа неспаренных валентных s - и р -электронов в состоянии, используемом для образования связи с 1 (щелочные металлы) до 3 (металлы третьей главной подгруппы), увеличивает КЧ с 8 (ОЦК решетка) до 12 (ГЦК или ГПУ решетка). При полиморфизме эффект от повышения числа валентных электронов эквивалентен понижению температуры или повышению давления.

Все неметаллические элементы, кроме кислорода, диамагнитны. Металлы, за исключением принадлежащих к группам 1Б‑IIIБ, являются парамагнитными. Среди металлов исключительно высоким магнетизмом обладают железо, кобальт и никель. По виду температурной зависимости можно выделить следующие группы металлов: магнитные свойства почти не изменяются вплоть до 1100 °С (Mo, W, Os); магнитная восприимчивость подчиняется закону Кюри-Вейса (К, Mg, Zn, In, Sc); магнитные свойства изменяются в слабой степени при температуре плавления (Na, Cd, A1); с аномальным изменением магнитных свойств (Ag, Аи, Tl, Sn, Pb, Sb, Bi) и, наконец, магнитные свойства изменяются (Zn, Tl) или не изменяются (Ti, Sn) в точках перехода. Упорядоченное в соответствии с периодическим законом Менделеева множество химических элементов подразделяется на подмножества, т. е. достаточно изолированные области химических элементов, соответствующие типичным металлам, ферромагнетикам, сверхпроводникам, диэлектрикам, полупроводникам и полуметаллам.

Молекул в кристалле. Кристаллическая структура определяется кристаллической решёткой, симметрией кристалла, формой и размерами его элементарной ячейки, типом и координатами атомов в ячейке. В идеальном кристалле содержание и положения атомов во всех ячейках одинаковые. За исключением химического состава все остальные характеристики кристаллической структуры определяются дифракционными методами - рентгеновского структурного анализа, электронографии, нейтронографии структурной. В кристаллах твёрдых растворов и при других отклонениях химического состава от стехиометрии структурный анализ высокой точности позволяет определить и уточнить соответствующие параметры.

При падении на монокристалл излучения с длиной волны порядка межатомных расстояний возникает дифракционная картина, которая состоит из дискретного набора пиков. Положения пиков определяются кристаллической решёткой, а их интенсивности зависят от типа атомов и их расположения в элементарной ячейке кристалла. Наличие в кристалле элементов симметрии проявляется в равенстве интенсивностей соответствующих пиков. Исключение составляет то, что дифракционная картина всегда центросимметрична (независимо от наличия или отсутствия центра симметрии в кристалле). Вследствие этого с помощью рентгеноструктурного анализа можно различить только 122 группы из 230 пространственных (фёдоровских) групп симметрии кристаллов. Наличие (или отсутствие) центра симметрии в кристалле можно установить по статистике распределения интенсивностей дифракционных пиков. Экспериментальное определение отсутствия центра симметрии возможно, если в кристалле есть атомы с аномальным рассеянием используемого излучения. Наиболее сложной является методика определения координат атомов в элементарной ячейке кристалла.

Рассмотрим кристаллическую структуру некоторых элементов периодической системы. Так, в двух модификациях полония различной симметрии содержится по 1 атому в элементарной ячейке. В элементарных ячейках кристаллов калия, цинка, молибдена и ряда других элементов содержится по 2 атома, в ячейке теллура - 3, а в двух модификациях марганца по 20 и 58 атомов в ячейке соответственно. В кристаллах неорганических и органических соединений могут находиться от единиц до сотен атомов в ячейке. В кристаллах белков от тысяч до сотни тысяч атомов, а в закристаллизованных вирусах ещё на 2-3 порядка больше.

Рассмотрим кристаллическую структуру кристаллов различной природы. Кристаллы ниобата лития LiNbO 3 широко применяются в лазерной технике и оптике. На рисунке 1 представлены два изображения его кристаллической структуры. В первом случае атомы - шарики. Крупные анионы кислорода не позволяют увидеть общую организацию строения кристалла. Л. Полинг предложил изображать неорганические структуры в форме полиэдров, вершины которых являются центрами анионов, а внутри полиэдров находится соответствующий катион. В представленном на рисунке 1, б ниобате лития это октаэдры и .

Кристаллы семейства ниобата стронция-бария Sr 1-x Ba x Nb 2 О 6 характеризуются нелинейными оптическими, пиро и пьезоэлектрическими свойствами (смотри Пироэлектрики, Пьезоэлектричество), которыми можно целенаправленно управлять, меняя соотношение стронция и бария. На рисунке 2 представлена кристаллическая структура этих кристаллов, из которой видно, что часть атомов стронция занимает собственную позицию, а в другой позиции статистически расположены атомы бария и стронция, координаты которых несколько различаются.

Кристаллические структуры органических соединений обычно представляют собой плотную упаковку молекул, связанных слабыми ван-дер-ваальсовыми и, возможно, водородными связями. Кристаллы органических соединений находят применение в технике, однако часто их получают только для того, чтобы рентгеновскими методами установить атомное строение молекул, так как органические соединения в растворах (а биологически активные соединения в организме) действуют в качестве отдельных молекул. Структуры молекул антибиотиков - аналогов энниатина В и споридесмолида представлены на рисунке 3. Первое соединение является препаратом для избирательного транспорта катионов через биологические мембраны, а второе - лишено этого свойства из-за внутримолекулярных водородных связей, хотя обе молекулы циклические и состоят из 6 аминокислотных остатков. Различие в строении молекул установлено по кристаллической структуре соответствующих кристаллов.

Современный структурный анализ высокой точности позволяет определять не только координаты атомов, но и параметры тепловых колебаний атомов с учётом анизотропии и ангармонизма этих колебаний. Для не очень сложных соединений рентгеноструктурным анализом можно установить распределение электронной плотности в их кристаллах. Структурные методы чувствительны к нарушению стехиометрии химического состава кристалла и к его всевозможным дефектам. Обширный материал о структурах кристаллических веществ представлен в электронных базах данных (смотри Кристаллохимия).

Лит.: Белов Н. В. Структура ионных кристаллов и металлических фаз. М., 1947; он же. Структурная кристаллография. М., 1951; Китайгородский А. И. Органическая кристаллохимия. М., 1947; Федоров Е. С. Симметрия и структура кристаллов. М.; Л., 1949; Бландел Т., Джонсон Л. Кристаллография белка. М., 1979.

Способы описания и изображения атомного

Строения кристалла

Кристаллы

Периодичность структуры является наиболее характерным свойством кристаллов. В периодической решетке всегда можно выделить элементарную ячейку , транслируя которую в пространстве легко получить представление о структуре всего кристалла. Образование каким-либо элементом или соединением определенной пространственной решетки в основном зависит от размеров атомов и электронной конфигурации их внешних оболочек.

Русский ученый Е. С. Федоров почти за 40 лет до того, как были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ и предложил 230 пространственных гпупп. Геометрически возможны лишь 14 различных пространственных решеток, получивших название решеток Браве и являющихся основой шести кристаллических систем, приведенных в табл. 2.1 и на рис. 2.1. Иногда считают ромбоэдрическую, или тригональную, систему (а = b = с ; α = β = γ ≠ 90°) самостоятельной седьмой системой.

Если атомы расположены только в вершинах элементарной ячейки, то решетка называется примитивной или простой . Если атомы есть и на гранях или в объеме ячейки, то решетка будет сложной (например, базо-, объемо- и гранецентрированной).

Кристаллические тела могут быть в виде отдельных крупных кристаллов - монокристаллов или состоять из совокупности большого числа мелких кристалликов (зерен).

Таблица 2.1

Пространственные решетки кристаллических систем

Кристалличе- ская система Пространственная решетка Соотношение между осевыми углами и осевыми единицами
1. Триклинная I – простая a b c ; α β γ ≠ 90°
2. Моноклинная II – простая III – базоцентрированная a b c ; α = γ = 90°; β ≠ 90°
3. Ромбическаяили орторомбическая IV – простая V – базоцентрированная VI – объемноцентрированная VII – гранецентрированная a b c ; α = β = γ = 90°
4. Гексагональная VIII – простая IX – ромбоэдрическая a = b c ; α = β = 90°; γ = 120°
5. Тетрагональная X – простая XI – объемноцентрированная a = b c ; α = β = γ = 90°
6. Кубическая XII – простая XIII ‑ объемноцентрированная XIV – гранецентрированная a = b = c ; α = β = γ = 90°

Рис. 2.1. Решетки Браве

В случае поликристалла в пределах каждого зерна атомы расположены периодически, но при переходе от одного зерна к другому на границах раздела регулярное расположение частиц нарушается.

Монокристаллы характеризуются анизотропией свойств. В поликристаллических телах анизотропия в большинстве случаев не наблюдается, однако с помощью специальной обработки могут быть получены текстурованные материалы с ориентированым расположением кристаллов.

Так как монокристаллы анизотропны, то при определении электрических, механических и других свойств необходимо указывать расположение кристаллографических плоскостей и направления в кристаллах. Для этого используют индексы Миллера.

Индексы Миллера

Пусть плоскость отсекает на осях координат отрезки ОА, ОВ и ОС (в единицах периода решетки). Рассчитаем обратные им величины H = 1/ОА, K = 1/ОВ, L = 1/ОС и определим наименьшие целые числа с таким же соотношением, как H: K: L = h: k: l. Целочисленные (hkl) называются индексами Миллера плоскости.

В кубических кристаллах индексы (100) относятся к плоскости, параллельной осям У и Z; индексы (010) - к плоскости, параллельной осям X и Z, а (001) - к плоскости, параллельной осям X и Y. В кристаллах с ортогональными осями эти плоскости вместе с тем перпендикулярны соответственно осям X , Y и Z.

Для обозначения направлений в кристалле применяют индексы в виде наименьших целых чисел, относящихся между собой как компо­ненты вектора, параллельного данному направлению. В отличие от обозначения плоскостей их пишут в квадратных скобках. В кубических кристаллах эти направления перпендикулярны плоскости с теми же индексами. Положительное направление оси X обозначают , положительное направление оси Y - , отрица­тельное направление оси Z - , диагональ куба - и т.д. Обозначения кристаллографических плоскостей и направлений приведены, на рис. 2.2.

Плоскости, отсекающие равные отрезки, но расположенные в других октантах, эквивалентны в кристаллографическом и физико-химическом отношениях. Они образуют совокупность эквивалентных плоскостей – {hkl} или систему плоскостей, у которых h, k, l могут быть записаны в любом порядке и с любым числом минусов перед индексами. Минус записывается над индексом.

Положение направления в пространственной решетке может быть легко определено координатами атома, ближайшего к началу координат и лежащего на данном направлении.

Совокупность эквивалентных направлений или система направлений обозначается , где h, k, l могут быть записаны в любом порядке и с любым числом минусов: <100> ‑ совокупность направлений, параллельных всем ребрам куба; {100} ‑ совокупность плоскостей, параллельных всем граням куба.

Рис. 2.2. Примеры обозначения кристаллографических

плоскостей и направлений в кубических кристаллах

с помощью индексов Миллера

Примеры решения задач

Пример 1. Определить индексы плоскости, отсекающей на осях решетки отрезки А = 1, В = 2, С = - 4.

Отношения величин, обратных отрезкам, 1/А: 1/В: 1/С = 1/1: 1/2: 1/(-4). Доводим это отношение до отношения трех целых чисел, умножая на общий знаменатель 4, дополнитель­ными множителями будут 4 и 2. 1/А: 1/В: 1/С = 4: 2:(- 1). Это и будут искомые h, k, l. Индексы плоскости (42 ).

Пример 2. Определить отрезки, которые отсекает на осях решетки плоскость (023).

Записываем величины, обратные индексам плоскости: 1/0, 1/2, 1/3. Умножаем на общий знаменатель, равный 6 (доводим отрезки до целых чисел). Отрезки, отсекаемые плоскостью на осях, будут равны А = , В = 3, С = 2. Эта плоскость будет параллельна оси х, так как А = .

Полиморфизм

Некоторые твердые вещества обладают способностью образовывать не одну, а две и более кристаллические структуры, устойчивые при различных температурах и давлениях. Такое свойство материалов называют полиморфизмом, а отвечающие им кристаллические структуры называют полиморфными формами или аллотропными модификациями вещества.

Модификацию, устойчивую при нормальной и более низкой температуре, принято обозначать буквой α ; модификации, устойчивые при более высоких температурах, обозначают соответственно буквами β , γ и т.д.

Полиморфизм широко распространен среди технических материалов и имеет важное значение для их обработки и эксплуатации.

Классическим примером полиморфизма является низкотемпературное пре­вращение белого олова (β -Sn) в серое (α -Sn), известное в технике как «оловянная чума».

Практический интерес представляет полиморфизм углерода - существование его в виде алмаза или графита. В обычных условиях графит является более устойчивой модификацией, чем алмаз. Однако при повышении давления устойчивость алмаза растет, а графита падает, и при достаточно высоких давлениях алмаз становится более устойчивым. Если при этом повысить температуру, чтобы увеличить подвижность атомов, то графит можно перевести в алмаз. На этом принци­пе основано получение искусственных алмазов. В Советском Союзе их промышленное производство началось в 1961 г. Синтез проводят под давлением порядка 10 10 Па при температуре на уровне 2000 °С. Получаемые таким образом искусственные алмазы имеют более высокую прочность и твердость, нежели природные кристаллы.

2.1.5. Изоморфизм

Изоморфизм – это свойство химически и геометрически близких атомов и ионов и их сочетаний замещать друг друга в кристаллической решетке, образуя кристаллы переменного состава.

Изоморфные кристаллы кремния и германия образуют непрерывный ряд твердых растворов замещения. Оба этих вещества кристаллизуются в структуре алмаза, период решетки германия а = 0,565 нм, кремния а = 0,542 нм, различие в периодах составляет менее 4 %, поэтому возможно образование образование твердых растворов замещения с неограниченной растворимостью, в которых атомы германия и кремния располагаются в узлах алмазной решетки.

Плотность, период решетки, твердость в изоморфном ряду смешанных кристаллов Si – Ge меняются линейно. Подбором различных изоморфных составов удается варьировать области рабочих температур и электрофизические параметры для этих и других твердых растворов полупроводниковых соединений.


Похожая информация.


Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным - железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

"Химия. 9 класс" - это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в и образует кристаллические решетки. Химия, физика и металловедение - это науки, которые занимаются изучением особенностей строения таких структур.

Сама - это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей Объединяет их все одна особенность - в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название "объемно-центрированная".

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей - высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства - блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства - высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия. 9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав - строение - свойства - применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кристамллы (от греч. ксэуфбллпт, первоначально -- лёд, в дальнейшем -- горный хрусталь, кристалл) -- твёрдые тела, в которых атомырасположены закономерно, образуя трёхмерно-периодическую пространственную укладку -- кристаллическую решётку.

Кристаллы -- это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений, составляющих вещество частиц (атомов, молекул, ионов).

Свойства:

Однородность. Это свойство проявляется в том, что два одинаковых элементарных объема кристаллического вещества, одинаково ориентированные в пространстве, но вырезанные в разных точках этого вещества, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, удельный вес, твердость, теплопроводность, электропроводность и др.

Необходимо иметь в виду, что реальные кристаллические вещества очень часто содержат постоянные примеси и включения, искажающие их кристаллические решетки. Поэтому абсолютной однородности в реальных кристаллах часто не бывает.

Анизотропия кристаллов

Многим кристаллам присуще свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных веществах (большинстве газов, жидкостей, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят. Процесс неупругого деформирования кристаллов всегда осуществляется по вполне определённым системам скольжения, то есть лишь по некоторым кристаллографическим плоскостям и лишь в некотором кристаллографическом направлении. В силу неоднородного и неодинакового развития деформации в различных участках кристаллической среды между этими участками возникает интенсивное взаимодействие через эволюцию полей микронапряжений.

В то же время существуют кристаллы, в которых анизотропия отсутствует.

В физике мартенситной неупругости накоплен богатый экспериментальный материал, особенно по вопросам эффектов памяти формы и пластичности превращения. Экспериментально доказано важнейшее положение кристаллофизики о преимущественном развитии неупругих деформаций почти исключительно посредством мартенситных реакций. Но принципы построения физической теории мартенситной неупругости неясны. Аналогичная ситуация имеет место в случае деформации кристаллов механическим двойникованием.

Значительные успехи достигнуты в изучении дислокационной пластичности металлов. Здесь не только понятны основные структурно-физические механизмы реализации процессов неупругой деформации, но и созданы эффективные способы расчёта явлений.

Способнось самоотгоняться - свойство кристаллов образовывать грани при свободном росте.Так. если выточенный из какого-либо вещества шарик, например поваренная соль, поместить в ее пересыщенный раствор, то через некоторе время этот шарик примет форму куба. В противоположенность этому стеклянный шарик не изменит свою форму так как аморфное вещество не может самоотгоняться.

Постоянная точка плавления. Если нагревать кристаллическое тело, то температура его будет повышаться до определенного предела, при дальнейшем нагревании вещество начнет плавиться, а температура некоторре время останется постоянной, так как все тепло пойдет на разрушение кристаллической решетки. Температура, при которой начинается плавленеиЮ называется температурой плавления.

Систематика кристаллов

Кристаллическая структура

Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам этого вещества. Кристаллимческая структумра -- такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причем все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.

В простейшем случае мотивная единица состоит из одного атома, например в кристаллах меди или железа. Возникающая на основе такой мотивной единицы структура геометрически весьма сходна с решёткой, но все же отличается тем, что составлена атомами, а не точками. Часто это обстоятельство не учитывают, и термины «кристаллическая решётка» и «кристаллическая структура» для таких кристаллов употребляются как синонимы, что нестрого. В тех случаях, когда мотивная единица более сложна по составу -- состоит из двух или большего числа атомов, геометрического сходства решётки и структуры нет, и смещение этих понятий приводит к ошибкам. Так, например, структура магния или алмаза не совпадает геометрически с решёткой: в этих структурах мотивные единицы состоят из двух атомов.

Основными параметрами, характеризующими кристаллическую структуру, некоторые из которых взаимосвязаны, являются следующие:

§ тип кристаллической решётки (сингония, решётка Браве);

§ число формульных единиц, приходящихся на элементарную ячейку;

§ пространственная группа;

§ параметры элементарной ячейки (линейные размеры и углы);

§ координаты атомов в ячейке;

§ координационные числа всех атомов.

Структурный тип

Кристаллические структуры, обладающие одинаковой пространственной группой и одинаковым размещением атомов по кристаллохимическим позициям (орбитам), объединяют в структурные типы.

Наиболее известны структурные типы меди, магния, б-железа, алмаза (простые вещества), хлорида натрия, сфалерита, вюрцита, хлорида цезия, флюорита (бинарные соединения),перовскита, шпинели (тройные соединения).

Кристаллическая решётка

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.

Размещено на http://www.allbest.ru/

Рис. Кристаллическая решетка

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ -- кварц, тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство -- закономерное положение атомов в кристаллической решётке.

Дефекты кристаллической решетки (реальное строение кристаллов)

В реальных кристаллах всегда имеются отклонения от идеального порядка в расположении атомов, называемые несовершенствами или дефектами решетки. По геометрии вызываемых ими нарушений решетки дефекты подразделяют на точечные, линейные и поверхностные.

Точечные дефекты

На рис. 1.2.5 показаны различные виды точечных дефектов. Это вакансии - пустые узлы решетки, «свои» атомы в междоузлии и атомы примесей в узлах решетки и междоузлиях. Основная причина образования первых двух видов дефектов - движение атомов, интенсивность которого возрастает с повышением температуры.

Рис. 1.2.5. Типы точечных дефектов кристаллической решетки: 1 - вакансия, 2 - атом в междоузлии, 3 и 4 - атомы примесей в узле и междоузлии соответственно

Вокруг любого точечного дефекта возникает местное искажение решетки радиусом R в 1…2 периода решетки (см. рис. 1.2.6), поэтому, если таких дефектов много, они влияют на характер распределения межатомных сил связи и, соответственно, на свойства кристаллов.

Рис. 1.2.6. Локальное искажение кристаллической решетки вокруг вакансии (а) и примесного атома в узле решетки (б)

Линейные дефекты

Линейные дефекты называются дислокациями. Их появление вызвано наличием в отдельных частях кристалла «лишних» атомных полуплоскостей (экстраплоскости). Они возникают в процессе кристаллизации металлов (из-за нарушения порядка заполнения атомных слоев) или в результате их пластического деформирования, как показано на рис. 1.2.7.

Рис. 1.2.7. Образование краевой дислокации () в результате частичного сдвига верхней части кристалла под действием усилия: АВСD - плоскость скольжения; EFGН - экстраплоскость; EН - линия краевой дислокации

Видно, что под влиянием сдвигающего усилия произошел частичный сдвиг верхней части кристалла вдоль некоторой плоскости скольжения («легкого сдвига») АВСD. В результате образовалась экстраплоскость EFGH. Поскольку она не имеет продолжения вниз, вокруг ее края EH возникает упругое искажение решетки радиусом в несколько межатомных расстояний (т.е. 10 -7 см - см. тема 1.2.1), протяженность же этого искажения во много раз больше (может доходить до 0,1…1 см).

Такое несовершенство кристалла вокруг края экстраплоскости является линейным дефектом решетки и называется краевой дислокацией.

Важнейшие механические свойства металлов - прочность и пластичность (см. тема 1.1) - определяются наличием дислокаций и их поведением при нагружении тела.

Остановимся на двух особенностях механизма перемещения дислокаций.

1. Дислокации могут весьма легко (при малой нагрузке) передвигаться вдоль плоскости скольжения посредством «эстафетного» перемещения экстраплоскости. На рис. 1.2.8 показан начальный этап такого движения (двумерный рисунок в плоскости, перпендикулярной линии краевой дислокации).

Рис. 1.2.8. Начальный этап эстафетного перемещения краевой дислокации (). А-А - плоскость скольжения, 1-1 экстраплоскость (исходная позиция)

Под действием усилия атомы экстраплоскости (1-1) отрывают от плоскости (2-3) атомы (2-2), расположенные выше плоскости скольжения. В результате эти атомы образуют новую экстраплоскость (2-2); атомы «старой» экстраплоскости (1-1) занимают освободившиеся места, достраивая плоскость (1-1-3). Этот акт означает исчезновение «старой» дислокации, связанной с экстраплоскостью (1-1), и возникновение «новой», связанной с экстраплоскостью (2-2), или, другими словами, передачу «эстафетной палочки» - дислокации на одно межплоскостное расстояние. Такое эстафетное перемещение дислокации будет продолжаться до тех пор, пока она не дойдет до края кристалла, что будет означать сдвиг его верхней части на одно межплоскостное расстояние (т.е. пластическую деформацию).

Этот механизм не требует больших усилий, т.к. состоит из последовательных микросмещений, затрагивающих лишь ограниченное число атомов, окружающих экстраплоскость.

2. Очевидно, однако, что такая легкость скольжения дислокаций будет наблюдаться лишь в том случае, когда на их пути отсутствуют какие - либо препятствия. Такими препятствиями являются любые дефекты решетки (особенно линейные и поверхностные!), а также частицы других фаз, если они присутствуют в материале. Эти препятствия создают искажения решетки, преодоление которых требует дополнительных внешних усилий, поэтому могут заблокировать движение дислокаций, т.е. сделать их неподвижными.

Поверхностные дефекты

Все промышленные металлы (сплавы) являются поликристаллическими материалами, т.е. состоят из огромного количества мелких (обычно 10 -2 …10 -3 см), хаотически ориентированных кристалликов, называемых зернами. Очевидно, что периодичность решетки, присущая каждому зерну (монокристаллу), в таком материале нарушена, поскольку кристаллографические плоскости зерен повернуты относительно друг друга на угол б (см. рис. 1.2.9), величина которого колеблется от долей до нескольких десятков градусов.

Рис. 1.2.9. Схема строения границ зерен в поликристаллическом материале

Граница между зернами представляет собой переходный слой шириной до 10 межатомных расстояний, обычно с неупорядоченным расположением атомов. Это место скопления дислокаций, вакансий, примесных атомов. Поэтому в объеме поликристаллического материала границы зерен являются двумерными, поверхностными дефектами.

Влияние дефектов решетки на механические свойства кристаллов. Пути повышения прочности металлов.

Прочность - это способность материала сопротивляться деформации и разрушению под действием внешней нагрузки.

Под прочностью кристаллических тел понимают их сопротивление приложенной нагрузке, стремящейся сдвинуть или, в пределе, оторвать одну часть кристалла относительно другой.

Наличие в металлах подвижных дислокаций (уже в процессе кристаллизации возникает до 10 6 …10 8 дислокаций в сечении, равном 1см 2) приводит к их пониженной сопротивляемости нагружению, т.е. высокой пластичности и невысокой прочности.

Очевидно, что наиболее эффективным способом повышения прочности будет удаление дислокаций из металла. Однако такой путь не технологичен, т.к. бездислокационные металлы удается получать лишь в виде тонких нитей (так называемых «усов») диаметром в несколько микрон и длиной до 10 мкм.

Поэтому практические способы упрочнения основаны на торможении, блокировании подвижных дислокаций путем резкого увеличения числа дефектов решетки (в первую очередь линейных и поверхностных!), а также создании многофазных материалов

Такими традиционными методами повышения прочности металлов являются:

– пластическое деформирование (явление наклепа или нагартовки),

– термическая (и химико-термическая) обработка,

– легирование (введение специальных примесей) и, наиболее общий подход, - это создание сплавов.

В заключение следует отметить, что повышение прочности, основанное на блокировании подвижных дислокаций, приводит к снижению пластичности и ударной вязкости и, соответственно, эксплуатационной надежности материала.

Поэтому вопрос о степени упрочнения необходимо решать индивидуально, исходя из назначения и условий работы изделия.

Полиморфизм в буквальном смысле слова означает многоформенность, т.е. явление, когда одинаковые по химическому составу вещества кристаллизуются в различных структурах и образуют кристаллы различных сингогий. Например алмаз и графит имеют одинаковый химический состав, но различные структуры, оба минерала резко отличаются по физ. свойствам. Другим примером может служить кальцит и арагонит - они имеют одинаковый состав СаСО 3 , но представляют различные полиморфные модификации.

Явление полиморфизма связаны с условиями образования кристаллических веществ и обусловлены тем, что в различных термодинамических условиях устойчивыми являются только определенные структуры. Так, металлические олово (так называемое белое олово) при понижении температуры ниже -18 С 0 становится неустойчивым и рассыпается образуя «серое олово» уже иной структуры

Изоморфизм. Сплавы металлов представляют собой кристаллические структуры переменного состава, в которых атомы одного элемента располагаются в промежутках кристаллической решетки другого. Это так называемые твердые растворы второго рода.

В отличие от твердых растворов второго рода в твердых растворах первого рода атомы или ионы одного кристаллического вещества могут замещаться атомами или ионами другого. Последние располагаются в узлах кристаллической решетки. Подобного рода растворы называются изоморфными смесями.

Условия необходимые для проявления изоморфизма:

1) Замещаться могут только ионы одного знака, т.е., катион на катион, а анион на анион

2) Замещаться могут только атомы или ионы близкого размера, т.е. разница величины ионных радиусов не должна превышать при совершенном изоморфизме 15% и несовершенном 25% (например Са 2+ на Mg 2+)

3) Замещаться могут только ионы, близкие по степени поляризации (т.е. по степени ионности-ковалентности связи)

4) Замещаться могут только элементы, имеющие одинаковое координационное число в данной кристаллической структуре

5) изоморфные замещения должны происходить таким образом. Чтобы не нарушался электростатический баланс кристаллической решетки.

6) изоморфные замещения протекают в сторону приращения энергии решетки.

Типы изоморфизма. Различают 4 типа изоморфизма:

1) изовалентный изоморфизм характеризуется тем, что в этом случае происходит ионов одинаковой валентности причем разница в размерах ионных радиусов не должна быть более 15%

2) гетеровалентный изоморфизм. При этом происходит замещение ионов различной валентности. При таком замещении один ион не может замещаться другим без того, чтобы нарушился электростатический баланс кристаллической решетки, поэтому при гетеровалентном изоморфизме замещается не ион, как при гетеровалентном, а группа ионов определенной валентности на другую группу ионов при сохранении той же суммарной валентности.

Необходимо в этом случае всегда помнить что замещение иона одной валентности на ион другой всегда связано с компенсацией валентности. Эта компенсация может происходить как в катионной, так и в анионной части соединений. При этом необходимо соблюдение следующих условий:

А) сумма валентностей замещаемых ионов должна быть равна сумме валентностей замещающих ионов.

Б) сумма ионных радиусов замещаемых ионов должна быть близка к сумме ионных радиусов замещающих ионов и может отличаться от нее не более чем на 15% (для совершенного изоморфизма)

3) изоструктурный. Происходит замещение не одного иона на другой или группы ионов на другую группу, а замещение целого «блока» одной кристаллической решетки на другой такой же «блок». Это может происходить только в том случае, если структуры минералов однотипны и имеют близкие размеры элементарных ячеек.

4) изоморфизм особого рода.

кристалл решётка дефект дислокация

Размещено на Allbest.ru

Подобные документы

    Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.

    курсовая работа , добавлен 09.12.2010

    Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.

    дипломная работа , добавлен 09.01.2014

    Прохождение тока через электролиты. Физическая природа электропроводности. Влияние примесей, дефектов кристаллической структуры на удельное сопротивление металлов. Cопротивление тонких металлических пленок. Контактные явления и термоэлектродвижущая сила.

    реферат , добавлен 29.08.2010

    Понятие и классификация дефектов в кристаллах: энергетические, электронные и атомные. Основные несовершенства кристаллов, образование точечных дефекто, их концентрация и скорость перемещения по кристаллу. Диффузия частиц за счет движений вакансий.

    реферат , добавлен 19.01.2011

    Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.

    курсовая работа , добавлен 12.04.2012

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Кристаллизация как процесс перехода металла из жидкого состояния в твердое с образованием кристаллической структуры. Схема образования шва при дуговой сварке. Ключевые факторы и условия, необходимые для начала роста кристаллов из жидкого металла.

    презентация , добавлен 26.04.2015

    Изучение структуры (образование кристаллитами, расположенными хаотическим образом) и способов получения (охлаждение расплава, напыление из газовой фазы, бомбардировка кристаллов нейронами) стекол. Ознакомление с процессами кристаллизации и стеклования.

    реферат , добавлен 18.05.2010

    Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.

Включайся в дискуссию
Читайте также
Расходы операционной деятельности
Упрощенный бухгалтерский баланс
Что такое нераспределенная прибыль в балансе