Подпишись и читай
самые интересные
статьи первым!

Лимбическая система. Что нами управляет? Лимбическая система: строение и функции

ЛИМБИЧЕСКАЯ СИСТЕМА И РЕТИКУЛЯРНАЯ ФОРМАЦИЯ

    Структуры лимбической системы

    Ретикулярная формация мозга

Вопрос_1

Структуры лимбической системы

Название лимбическая система получила от латинского слова limbus

край или граница.

Определение_1

Лимбическая система представляет собой совокупность подкорковых и корковых структур головного мозга , которая охватывает верхнюю часть ствола головного мозга.

Первую характеристику этой структуре дал французский физиолог Поль Брока (1878 г.). Он рассматривал филогенетически старые области мозга, расположенные вокруг мозгового ствола, и назвал ее «большой лимбической долей». В последствие эту область стали обозначать как «обонятельный мозг», что не отражает ведущей функции этой структуры в организации сложных поведенческих актов.

Обонятельный мозг – филогенетически самая древняя часть переднего мозга, которая возникла в связи с развитием обоняния. Так, например, у рыб обонятельный мозг практически полностью составляет передний мозг. У млекопитающих эта область переднего мозга переходит в подчинение коре полушарий, и вытесняется на нижнюю и медиальную поверхность полушарий переднего мозга. В обонятельном мозге условно выделяют периферический и центральный отделы.

К периферическому отделу относятся структуры древней коры (палеокертекс):

    обонятельную луковицу (bulbus olfactorius )

    обонятельный тракт (tractus olfactorius )

    обонятельный треугольник (trigonum olfactorium )

    переднее продырявленное вещество (substantia perforata anterior )

К центральному отделу относятся структуры старой коры (архиокортекса):

    сводчатая извилина (gyrus fornicatus )

    зубчатая извилина (gyrus dentatus )

    гиппокамп (hippocampus )

    миндалевидное тело (corpus amygdaloideum )

    мамиллярные тела (corpus mamillare )

Выявление роли данных образований в регуляции вегетативно-висцеральных функций повлекло возникновение термина «висцеральный мозг» (Пауль Мак-Лин, 1949). Дальнейшее уточнение анатомо-функциональных особенностей и физиологической роли этих структур привело к употреблению определения – «лимбическая система».

Сводчатая извилина имеет кольцевидную форму, огибает мозолистое тело и расположена на медиальной поверхности полушарий мозга. Сводчатая извилина состоит из трех частей: поясной извилина, перешейка и парагиппокампальной извилины. Сверху поясную извилину ограничивает поясная борозда, а снизу борозда мозолистого тела. Сзади, на уровне теменно-затылочной борозды поясная борозда переходит в перешеек свода, переходящий в извилину гиппокампа. Извилина гиппокампа, или парагиппокампальная извилина у переднего продырявленного вещества загибается в виде крючка (корковый центр обонятельного анализатора).

Рисунок 1 – Основные структуры лимбической системы

Гиппокамп (аммонов рог) – это парное образование в головном мозге позвоночных, которое является основной частью архиокортекса – старой коры и лимбической системы млекопитающих. Впервые гиппокамп появился у двоякодышащих рыб и безногих амфибий. Гиппокамп земноводных надстраивался над гипоталамусом, у пресмыкающихся появились связи между гиппокампом и гипоталамусом, а у млекопитающих возникли связи с амигдалярным комплексом базальных ганглиев головного мозга. В результате развития архиокортекса и возникла лимбическая система.

Зубчатая извилина представляет скрученную часть коры височной доли, которая примыкает к гиппокампальной борозде. Миндалевидное тело – это группа ядер, которые расположены внутри височной доли мозга, и относящейся одновременно к базальным ганглиям и лимбической системе. Мамиллярные тела – это система толстых миелинизированных волокон и ядерных образований, которые входят в состав гипоталамуса промежуточного мозга и лимбической системы. Мамилярные тела принимают волокна от коры больших полушарий и мозжечка и оказывают тормозящее влияние на структуры лимбической системы.

Свод (fornix ) – структура обеспечивающая соединение гиппокампа с мамиллярными телами. Она состоит из двух дугообразных тяжей, имеет столбы, тело, две ножки и спайку, соединяющую ножки свода. Каждая ножка, спускается вниз и переходит в бахрому гиппокамп.

Кроме указанных структур в лимбическую систему в настоящее время включают гипоталамус и ретикулярную формацию среднего мозга.

Лимбическая система имеет кольцевую структуру, афферентные входы осуществляются от различных областей головного мозга, через гипоталамус, ретикулярную формацию и волокна обонятельного нерва, которые считаются главными источниками ее возбуждения. Эфферентные выходы из лимбической системы осуществляются через гипоталамус на вегетативные и соматические центры ствола мозга и спинного мозга.

Рисунок 2 – Схема основных внутренних связей лимбической системы.

А – круг Пейпеца, Б – круг Наута; ГТ/МТ – мамилярные тела гипоталамуса, СМ – средний мозг (по В.М. Смирнову)

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе – реверберации возбуждения, и тем самым служит для сохранения в ней единого состояния и навязывания этого состояния другим системам мозга.

В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеца (гиппокамп - сосцевидные тела - передние ядра таламуса - кора поясной извилины - парагиппокампова извилина - гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения. Другой круг, круг Наута (миндалевидное тело - гипоталамус - мезенцефальные структуры - миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Вопрос_2

Ретикулярная формация мозга

Ретикулярная формация (лат. reticulum – сетка, formatio – образование) – это участок ствола головного мозга, состоящий из диффузного скопления нейронов с разветвлёнными аксонами и дендритами, представляющих единый комплекс. Ретикулярная формация осуществляет активацию коры головного мозга и контролирует рефлекторную деятельность спинного мозга. Эта сеть нейронов располагается в самой большой части мозгового ствола. Она берет начало из нижней части продолговатого мозга и протягивается до ядер таламуса.

Рисунок 3 – Ретикулярная формация в структуре мозга

Термин «ретикулярная формация» ввел немецкий анатом и гистолог Отто Дейтерс. Он описал сетевидное образование, расположенное в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх). В ретикуляной формации можно выделить две морфологические части – «белую» ретикулярную формацию (с преобладанием миелинизированных волокон) и «серую» ретикулярную формацию (состоящую из клеток и слабо миелинизированных волокон). РФ образована группами мелких, средних и крупных мультиполярных вставочных нейронов с различным характером ветвления дендритов и аксонов, содержащих различные нейромедиаторы. Диффузно расположенные элементы сменяются участками отдельных ядерных скоплений.

Нейроны ретикулярной формации характеризуются большим количеством афферентных связей, идущих от сенсорных образований. Их отростки направляются в кору больших полушарий, в ядра различных отделов головного мозга и мозжечка. Восходящие проекции обеспечивают активирующие влияние ретикулярной формации на высшие центры нервной системы. Нисходящие проекционные пути ретикулярной формации рассматривают как систему, угнетающую активность нижележащих центров. Важной особенностью ретикулярной формации является существование в ней большого количества ретикулярных нейронов, посылающих одновременно крупные аксоны в спинной мозг и таламус. Основной объем проекций представлен волокнами ретикулоспинального тракта, который угнетает активность мотонейронов спинного мозга. Основные медиаторы ретикулярной формации: ацетилхолин, норадренолин, дофамин, серотонин.

Открытие функции ретикулярной формации, приписывается Джузеппе Моруцци (Giuseppe Moruzzi) и Горацию Магоуну (Horace Magoun). Эти исследователи обнаружили в 1949 году, что при электрической стимуляции ретикулярной формации, у подопытных животных, находящихся под наркозом, на ЭЭГ волновые активность сна сменяется на волновую активность бодрствования.

Ретикулярная формация приписывают участие в восприятии боли агрессивном и половом поведении.

Лимбическая система, также называемая висцеральным мозгом, ринэнцефалоном, тимэнцефалоном заключает в себе целый комплекс структур разных среднего, промежуточного, конечного, которые участвуют в организации мотивационных, висцеральных и эмоциональных реакций организма.

Лимбическая система головного мозга имеет очень сложное строение, она объединяет такие отделы старой коры, как гиппокамп, лимбическую и поясную извилины; отделы новой коры: лобные, височные отделы и лобно-височную промежуточную зону; подкорковые структуры: бледный шар, скорлупу, перегородку, гипоталамус, неспецифические ядра таламуса, ретикулярную формацию среднего мозга. Все подкорковые структуры очень тесно связаны с основными структурами коры большого мозга. Структуры системы локализованы, в основном, на полушариях большого мозга.

Лимбическая система, функции которой на начальном этапе эволюции животного мира формировались на основе обоняния, обеспечивает многие жизненно важные реакции организма, такие как ориентировочные, половые и пищевые. Обоняние не только выступило в качестве основного интегрирующего фактора, но и объединило структуры головного мозга в единый целостный комплекс. Поэтому у высших позвоночных животных, в том числе и у человека, структуры лимбической системы, построенные на основе нисходящих и восходящих путей, имеют замкнутую систему функционирования.

Лимбическая система управляет многим важнейшими процессами, протекающими в организме - регуляцией водно-солевого баланса, поддержанием постоянной температуры тела, а также поведенческими реакциями, в частности, пищевыми, направленными на получение энергии и питательных веществ. Она определяет эмоциональное поведение человека, сексуальное поведение, процессы сна и бодрствования, обучения и запоминания. Эта система определяет и управляет мотивацией поведения, обеспечивает целенаправленность всех действий. В результате приспособление организма к изменениям условий окружающей среды постоянно совершенствуется. И в первую очередь это касается общественной среды, так как человек - существо сугубо социальное.

Также лимбическая система обеспечивает еще одну важнейшую функцию - вербальную или несущую информацию о каких-либо событиях, имеющихся знаниях или приобретенных навыках и опыте. В клинической практике было выявлено, что при нарушении функций или повреждениях лимбических структур у пациентов наблюдается развитие амнезии. Но ученые утверждают, что лимбическая система не является хранилищем информации, потому что фрагменты памяти рассредоточены по всей ассоциативной коре. А лимбическая система лишь функционально их объединяет и делает доступными для воспроизведения. При нарушении лимбических структур память не стирается, ее фрагменты остаются и сохраняются, а лишь происходит сбой ее сознательного воспроизведения. Поэтому практически все люди, с поражением лимбической системы способны моментально осваивать многие двигательные или перцептивные навыки и умения, но при этом они не могут вспомнить, где раньше могли этому научиться.

Нарушения функций лимбической системы могут вызывать травмы головного мозга, нейроинфекции и интоксикации, сосудистые патологии, эндогенные психозы и неврозы. В зависимости от объема поражения или его локализации могут возникать эпилепсические судорожные состояния, автоматизмы, изменения сознания и настроения, дереализация и деперсонализация, а также слуховые, вкусовые и обонятельные галлюцинации.

2. Саморегуляция вегетативных функций

3. Роль лимбической системы в формировании мотиваций, эмоций, организации памяти

Заключение

Использованная литература

Введение

В каждом из двух полушарий головного мозга различают шесть долей: лобная доля, теменная доля, височная доля, затылочная доля, центральная (или островковая) доля и лимбическая доля. Совокупность образований, расположенных преимущественно на нижне-медиальных поверхностях полушарий головного мозга, тесно взаимосвязанных с гипоталамусом и вышележащими структурами, была впервые обозначена как самостоятельное образование (лимбическая доля) в 1878 г. французским анатомом Полем Брока (Paul Broca, 1824-1880). Тогда к лимбической доле относили лишь краевые зоны коры, расположенные в виде двустороннего кольца на внутренней границе неокортекса (лат.: limbus - край). Это поясная и гиппокампиальную извилины, а также другие участки коры, расположенные рядом с волокнами, идущими от обонятельной луковицы. Эти зоны отделяли кору больших полушарий от ствола мозга и гипоталамуса.

Вначале полагали, что лимбическая доля выполняет только функцию обоняния и потому её называли также обонятельным мозгом. В последующем было установлено, что лимбическая доля вместе с рядом других соседних образований головного мозга выполняют многие другие функции. К ним относятся координация (организации взаимодействия) многих психических (например, мотиваций, эмоций) и физических функций, координация висцеральных систем и двигательных систем. В связи с этим данная совокупность образований была обозначена физиологическим термином - лимбическая система.

1. Понятие и значение лимбической системы в нервной регуляции

Возникновение эмоций связывают с деятельностью лимбической системы, в которую входят некоторые подкорковые образования и участки коры. Корковые отделы лимбической системы, представляющие ее высший отдел находятся на нижних и внутренних поверхностях больших полушарий (поясная извилина, гиппокамп и др.). К подкорковым структурам лимбической системы относят гипоталамус, некоторые ядра таламуса, среднего мозга и ретикулярной формации. Между всеми этими образованиями имеются тесные прямые и обратные связи образующие «лимбическое кольцо».

Лимбическая система участвует в самых разнообразных проявлениях деятельности организма. Она формирует положительные и отрицательные эмоции со всеми двигательными, вегетативными и эндокринными их компонентами (изменением дыхания, сердцебиения кровяного давления, деятельности желез внутренней секреции, скелетных и мимических мышц и др.). От нее зависит эмоциональная окраска психических процессов и изменения двигательной активности. Она создает мотивацию поведения (определенную предрасположенность). Возникновение эмоций имеет «оценочное влияние» на деятельность специфических систем, так как, подкрепляя определенные способы действий, пути решения поставленных задач, они обеспечивают избирательный характер поведения в ситуациях со многими выборами.

Лимбическая система участвует в формировании ориентировочных и условных рефлексов. Благодаря центрам лимбической системы могут вырабатываться даже без участия других отделов коры оборонительные и пищевые условные рефлексы. При поражениях этой системы затрудняется упрочение условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление (чрезмерно повышенная двигательная активность и т. д.). Известно, что так называемые психотропные вещества, изменяющие нормальную психическую деятельность человека, действуют именно на структуры лимбической системы.

Электрические раздражения различных участков лимбической системы через вживленные электроды (в эксперименте на животных и в клинике в процессе лечения больных) выявили наличие центров удовольствия, формирующих положительные эмоции, и центров неудовольствия, формирующих отрицательные эмоции. Изолированное раздражение таких точек в глубоких структурах мозга человека вызывало появление чувства «беспричинной радости», «беспредметной тоски», «безотчетного страха».

В специальных опытах с самораздражением на крысах животное приучали нажимом лапы на педаль замыкать цепь и производить электрическое раздражение собственного мозга через вживленные электроды. При локализации электродов вф центрах отрицательных эмоций (некоторые области таламуса) животное стараюсь избегать замыкания цепи, а при их расположении в центрах положительных эмоций (гипоталамус, средний мозг) нажимы лапой на педаль следовали почти непрерывно, доходя до 8 тыс. раздражений в 1 час.

Велика роль эмоциональных реакций в спорте (положительные эмоции при выполнении физических упражнений- «мышечная радость», радость победы и отрицательные - неудовлетворенность спортивным результатом и др.). Положительные эмоции могут значительно повышать, а отрицательные - понижать работоспособность человека. Большие напряжения, сопровождающие спортивную деятельность, особенно во время соревнований, создают и эмоциональное напряжение- так называемый эмоциональный стресс. От характера протекания в организме реакций эмоционального стресса зависит успешность двигательной деятельности спортсмена.


Регуляция деятельности внутренних органов осуществляется нервной системой через специальный ее отдел - вегетативную нервную систему.

Все функции организма можно разделить на соматические, или анимальные (от лат. animal - животное), связанные с деятельностью скелетных мышц, - организация позы и перемещение в пространстве, и вегетативные (от лат. vegetativus - растительный), связанные с деятельностью внутренних органов,-процессы дыхания, кровообращения, пищеварения, выделения, обмена веществ, роста и размножения. Деление это условно, так как вегетативные процессы присущи также и двигательному аппарату (например, обмен веществ и др.); двигательная деятельность неразрывно связана с изменением дыхания, кровообращения и пр.

Раздражения различных рецепторов тела и рефлекторные ответы нервных центров могут вызывать изменения как соматических, так и вегетативных функций, т. е. афферентные и центральные отделы этих рефлекторных дуг общие. Различны лишь их эфферентные отделы.

Совокупность эфферентных нервных клеток спинного и головного мозга, а также клеток особых узлов (ганглиев), иннервирующих внутренние органы, называют вегетативной нервной системой. Следовательно, эта система представляет собой эфферентный отдел нервной системы, через который центральная нервная система управляет деятельностью внутренних органов.

Характерной особенностью эфферентных путей, входящих в рефлекторные дуги вегетативных рефлексов, является их двухнейронное строение. От тела первого эфферентного нейрона, который находится в центральной нервной системе (в спинном, продолговатом или среднем мозгу), отходит длинный аксон, образующий предузловое (или преганглионарное) волокно. В вегетативных ганглиях - скоплениях клеточных тел вне центральной нервной системы-возбуждение переключается на второй эфферентный нейрон, от которого отходит послеузловое (или постганглионарное) волокно к иннервируемому органу.

Вегетативная нервная система подразделяется на 2 отдела - симпатический и парасимпатический. Эфферентные пути симпатической нервной системы начинаются в грудном и поясничном отделах спинного мозга от нейронов его боковых рогов. Передача возбуждения с предузловых симпатических волокон на послеузловые происходит в ганглиях пограничных симпатических стволов с участием медиатора ацетилхолина, а передача возбуждения с послеузловых волокон на иннервируемые органы - с участием медиатора адреналина, или симпатина. Эфферентные пути парасимпатической нервной системы начинаются в головном мозгу от некоторых ядер среднего и продолговатого мозга и от нейронов крестцового отдела спинного мозга. Парасимпатические ганглии расположены непосредственной близости от иннервируемых органов или внутри их. Проведение возбуждения в синапсах парасимпатического пути происходит с участием медиатора ацетилхолина.

Вегетативная нервная система, регулируя деятельность внутренних органов, повышая обмен веществ скелетных мышц, улучшая их кровоснабжение, повышая функциональное состояние нервных Центров и т.д., способствует осуществлению функций соматической и нервной системы, которая обеспечивает активную приспособительную деятельность организма во внешней среде (прием внешних сигналов, их обработку, двигательную деятельность, направленную на защиту организма, на поиски пищи, у человека - двигательные акты, связанные с бытовой, трудовой, спортивной деятельностью и пр.). Передача нервных влияний в соматической нервной системе осуществляется с большой скоростью (толстые соматические волокла имеют высокую возбудимость и скорость проведения 50- 140 м/сек). Соматические воздействия на отдельные части двигательного аппарата характеризуются высокой избирательностью. вегетативная нервная система участвует в этих приспособительных реакциях организма, особенно при чрезвычайных напряжениях (стресс).

Другой существенной стороной деятельности вегетативной нервной системы является ее огромная роль в поддержании постоянства внутренней среды организма.

Постоянство физиологических показателей может обеспечиваться различными путями. Например, постоянство уровня кровяного давления поддерживается изменениями деятельности сердца, про. света сосудов, количества циркулирующей крови, ее перераспределением в организме и т. п. В гомеостатических реакциях наряду с нервными влияниями, передающимися по вегетативным волокнам имеют значение гуморальные влияния. Все эти влияния в отличие от соматических передаются в организме значительно медленнее и более диффузно. Тонкие вегетативные нервные волокна отличаются низкой возбудимостью и малой скоростью проведения возбуждения (в предузловых волокнах скорость проведения составляет 3- 20 м/сек, а в послеузловых-0,5-3 м/сек).

В 1878 г. французский нейроанатом П. Брока описал структуры мозга, расположенные на внутренней поверхности каждого полушария головного мозга, которые подобно краю, или лимбу, окаймляют ствол головного мозга. Он назвал их лимбической долей. В последующем, в 1937 г., американский нейрофизиолог Д. Пейпец описал комплекс структур (круг Пейпеца), имеющих, по его мнению, отношение к формированию эмоций. Это передние ядра таламуса, сосцевидные тела, ядра гипоталамуса, миндалевидное тело, ядра прозрачной перегородки, гиппокамп, поясная извилина, мезенцефалическое ядро Гуддена и другие образования. Таким образом, круг Пейпеца содержал различные структуры, в том числе лимбической коры и обонятельного мозга. Термин «лимбическая система», или «висцеральный мозг», предложил в 1952 г. американский физиолог П. Мак Лин для обозначения круга Пейпеца. Позже в это понятие были включены и другие структуры, функция которых была связана с архиопалеокортексом. В настоящее время под термином «лимбическая система» понимают морфофункциональное объединегние, включающее ряд филогенетически старых структур коры большого мозга, ряд подкорковых структур, а также структур промежуточного и среднего мозга, которые участвуют в регуляции различных вегетативных функций внутренних органов, в обеспечении гомеостаза, в самосохранении вида, в организации эмоционально-мотивационного поведения и цикла «бодрствование - сон».

В состав лимбической системы входят препириформная кора, периамигдалярная кора, диагональная кора, обонятельный мозг, перегородка, свод, гиппокамп, зубчатая фасция, основание гиппокампа, поясная извилина, парагиппокампальная извилина. Отметим, что термин «лимбическая кора» обозначает только два образования - поясную извилину и парагиппокампальную извилину. Кроме структур древней, старой и средней коры, в лимбическую систему входят подкорковые структуры - миндалевидное тело (или амигдалярный комплекс), расположенное в медиальной стенке височной доли, передние ядра таламуса, сосцевидные, или мамиллярные, тела, сосцевидно-таламический пучок, гипоталамус, а также ретикулярные ядра Гуддена и Бехтерева, находящиеся в среднем мозге. Все основные формирования лимбической коры кольцеобразно охватывают основание переднего мозга и являются своеобразной границей между новой корой и стволовой частью мозга. Особенностью лимбической системы является наличие множественных связей как между отдельными структурами этой системы, так и между лимбической системой и другими структурами мозга, по которым информация, к тому же, может длительно циркулировать. Благодаря таким особенностям создаются условия для эффективного управления структурами мозга со стороны лимбической системы («навязывание» лимбического влияния). В настоящее время хорошо известны такие круги, как, например, круг Пейпеца (гиппокамп - сосцевидные, или мамиллярные, тела - передние ядра таламуса - поясная извилина - парагиппокамповая извилина - предоснование гиппокампа - гиппокамп), имеющий отношение к процессам памяти и процессам обучения. Известен круг, соединяющий между собой такие структуры, как миндалевидное тело, гипоталамус и структуры среднего мозга, регулирующий агрессивно-оборонительные поведение, а также пищевые и сексуальные формы поведения. Существуют круги, в которые лимбическая система включена как одна из важных «станций», благодаря чему реализуются важные функции мозга. Например, круг, соединяющий в единое целое новую кору и лимбическую систему через таламус, причастен к формированию образной, или иконической, памяти, а круг, соединяющий новую кору и лимбическую систему через хвостатое ядро, имеет прямое отношение к организации тормозных процессов в коре больших полушарий.

Функции лимбической системы. За счет обилия связей внутри лимбической системы, а также ее обширных связей с другими структурами мозга эта система выполняет достаточно широкий спектр функций:

1) регуляция функций диэнцефальных и неокортикальных образований;

2) формирование эмоционального состояния организма;

3) регуляция вегетативных и соматических процессов при эмоционально-мотивационной деятельности;

4) регуляция уровня внимания, восприятия, памяти, мышления;

5) выбор и реализация адаптивных форм поведения, включая такие биологически важные виды поведения как поисковое, пищевое, половое, оборонительное;

6) участие в организации цикла «сон - бодрствование».

Лимбическая система как филогенетически древнее образование оказывает регулирующее влияние на кору большого мозга и подкорковые структуры, устанавливая необходимое соответствие уровней их активности. Несомненно, что важную роль в реализации всех перечисленных функций лимбической системы играет поступление в эту систему мозга информации от обонятельных рецепторов (филогенетически наиболее древнего способа получения информации из внешней среды) и ее обработка.

Гиппокамп (морской конек, или аммонов рог) расположен в глубине височных долей мозга и представляет собой вытянутое возвышение (длиной до 3 см) на медиальной стенке нижнего, или височного, рога бокового желудочка. Это возвышение, или выступ, образуется вследствие глубокого вдавления снаружи в полость нижнего рога борозды гиппокампа. Гиппокамп рассматривают как основную структуру архиокортекса и как составную часть обонятельного мозга. Кроме того, гиппокамп является основной структурой лимбической системы, он связан со многими структурами мозга, в том числе за счет комиссуральных связей (спайка свода) - с гиппокампом противоположной стороны, хотя у человека обнаружена определенная независимость в деятельности обоих гиппокампов. Нейроны гиппокампа отличаются выраженной фоновой активностью, причем большинство из них характеризуется полисенсорностью, т. е. способностью реагировать на световые, звуковые и другие виды раздражений. Морфологически гиппокамп представлен стереотипно повторяющимися модулями нейронов, связанными между собой и с другими структурами. Связь модулей создает условие для циркулирования электрической активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа и число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Фоновая электрическая активность гиппокампа, как показали исследования на человеке, характеризуется ритмами двух видов: быстрыми (15 - 30 колебаний в секунду) низковольтными типа бета-ритма и медленными (4 - 7 колебаний в секунду) высоковольтными типа тета-ритма. При этом электрическая ритмика гиппокампа находится в реципрокных отношениях с ритмикой новой коры. Например, если во время сна в новой коре регистрируется тета-ритм, то в этот же период в гиппокампе генерируется бета-ритм, а при бодрствовании наблюдается противоположная картина - в новой коре - альфа-ритм и бета-ритм, а в гиппокампе преимущественно регистрируется тета-ритм. Показано, что активация нейронов ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гиппокампе и бета-ритма в новой коре. Подобный эффект (повышение тета-ритма в гиппокампе) наблюдается при формировании высокого уровня эмоционального напряжения (при страхе, агрессии, голоде, жажде). Считается, что тета-ритм гиппокампа отражает его участие в ориентировочном рефлексе, в реакциях настораживания, повышения внимания, в динамике обучения. В связи с этим тета-ритм гиппокампа рассматривается как электроэнцефалографический коррелят реакции пробуждения и как компонент ориентировочного рефлекса.

Важна роль гиппокампа в регуляции вегетативных функций и эндо-кринной системы. Показано, что особенно нейроны гиппокампа при своем возбуждении способны оказывать выраженное влияние на сердечно-сосудистую деятельность, модулируя активность симпатической и парасимпатической нервной системы. Гиппокамп, как и другие структуры архиопалеокортекса, участвует в регуляции деятельности эндокринной системы, в том числе в регуляции выделения глюкокортикоидов и гормонов щитовидной железы, что реализуется с участием гипоталамуса. Серое вещество гиппокампа принадлежит к двигательной области обонятельного мозга. Именно отсюда возникают нисходящие импульсы к подкорковым двигательным центрам, вызывающие движение в ответ на те или иные обонятельные раздражения.

Участие гиппокампа в формировании мотиваций и эмоций. Показано, что удаление гиппокампа у животных вызывает появление гиперсексуальности, которая, однако, при кастрации не исчезает (при этом может нарушаться материнское поведение). Это позволяет предположить, что изменение полового поведения, модулированное из архиопалеокортекса, имеет в основе не только гормональное происхождение, но и изменение возбудимости нейрофизиологических механизмов, регулирующих половое поведение. Показано, что раздражение гиппокампа (а также переднемозгового пучка и коры поясной извилины) вызывает у самца половое возбуждение. В отношении роли гиппокампа в модулировании эмоционального поведения однозначных сведений нет. Однако известно, что повреждение гиппокампа ведет к снижению эмоциональности, инициативности, замедлению скорости основных нервных процессов, к повышению порогов вызова эмоциональных реакций. Показано, что гиппокамп как структура архиопалеокортекса может служить субстратом для замыкания временных связей, а также, регулируя возбудимость новой коры, способствует формированию условных рефлексов на уровне новой коры. В частности, показано, что удаление гиппокампа не отражается на скорости образования простых (пищевых) условных рефлексов, но тормозит их закрепление и дифференцировку новых условных рефлексов. Имеются сведения об участии гиппокампа в реализации высших психических функций. Совместно с миндалевидным телом гиппокамп участвует в вычислении вероятности событий (гиппокамп фиксирует наиболее вероятные события, а амигдала - маловероятные). На нейронном уровне это может обеспечиваться работой нейронов новизны и нейронов тождества. Клинические наблюдения, в том числе У. Пенфилда и П. Милнера, указывают на участие гиппокампа в механизмах памяти. Хирургическое удаление гиппокампа у людей вызывает потерю памяти на события ближайшего прошлого при сохранении ее на отдаленные события (ретроантероградная амнезия). Некоторые психические заболевания, протекающие с нарушениями памяти, сопровождаются дегенеративными изменениями в гиппокампе.

Поясная извилина. Известно, что повреждение у обезьян поясной извилины делает их менее пугливыми; животные перестают бояться человека, не обнаруживают при этом признаков привязанности, беспокойства или враждебности. Это указывает на наличие в поясной извилине нейронов, ответственных за формирование отрицательных эмоций.

Ядра гипоталамуса как компонента лимбической системы. Раздражение медиальных ядер гипоталамуса у кошек вызывает немедленно реакцию ярости. Подобная реакция наблюдается у кошек при удалении части мозга, расположенной впереди от ядер гипоталамуса. Все это указывает на наличие в медиальном гипоталамусе нейронов, принимающих участие вместе с ядрами миндалевидного тела в организации эмоций, сопровождающихся яростью. В то же время латеральные ядра гипоталамуса, как правило, ответственны за появление положительных эмоций (центры насыщения, центры удовольствия, центры положительных эмоций).

Миндалевидное тело, или corpus amygdaloideum (синонимы - амигдала, амигдалярный комплекс, миндалевидный комплекс, миндалина), по мнению одних авторов, относится к подкорковым, или базальным, ядрам, по мнению других - к коре больших полушарий. Миндалевидное тело расположено в глубине височной доли мозга. Нейроны миндалины разнообразны по форме, их функции связаны с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения. Показана и причастность миндалевидного тела к регуляции процессов мочеобразования, мочеиспускания и сократительной деятельности матки. Повреждение миндалины у животных приводит к исчезновению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Миндалевидное тело регулирует пищевое поведение. Так, повреждение миндалевидного тела у кошки ведет к усилению аппетита и к ожирению. Кроме того, миндалевидное тело регулирует и половое поведение. Установлено, что повреждение миндалевидного тела у животных приводит к гиперсексуальности, к возникновению половых извращений, которые снимаются кастрацией и вновь возникают при введении половых гормонов. Косвенно это указывает на контроль со стороны нейронов миндалевидного тела в продукции половых гормонов. Совместно с гиппокампом, у которого имеются нейроны новизны, отражающие наиболее вероятные события, миндалевидное тело вычисляет вероятность событий, так как в нем содержатся нейроны, фиксирующие наиболее маловероятные события.

С анатомической точки зрения, прозрачная перегородка (перегородка) представляет собой тонкую пластинку, состоящую из двух листков. Прозрачная перегородка проходит между мозолистым телом и сводом, разделяя между собой передние рога боковых желудочков. Пластинки прозрачной перегородки содержат ядра, т. е. скопления серого вещества. Прозрачную перегородку в целом относят к структурам обонятельного мозга, она является важным компонентом лимбической системы.

Показано, что ядра перегородки причастны к регуляции эндокринной функции (в частности, они влияют на секрецию надпочечниками кортикостероидов), а также деятельности внутренних органов. Ядра перегородки имеют отношение к формированию эмоций - их рассматривают как структуру, снижающую агрессивность и страх.

Лимбическая система, как известно, включает структуры ретикулярной формации среднего мозга, в связи с чем некоторые авторы предлагают говорить о лимбико-ретикулярном комплексе (ЛРК).

Область, расположенная между корой больших полушарий и продолговатым мозгом и как бы окаймляющая его, получила название лимбической системы (от латинского слова «limbus» - кромка, кайма). Лимбическая система состоит из различных анатомически и функционально связанных образований головного мозга. К ней принято относить: некоторые ядра нервных клеток, располагающихся в передней области таламуса, гипоталамус, располагающееся глубоко в боковой части среднего мозга клеточное скопление, величиной с орех, под названием миндалина (миндалевидное ядро) и гиппокамп, находящийся по соседству с миндалиной.

Сегодня пока еще нет полного описания лимбической системы, как, собственно говоря, нет пока и четкого, окончательного мнения о ее границах, но уже точно установлено, что это «не что-нибудь», а именно Система, и что входящие в нее структуры действуют дружно и сообща, т.е. возбуждение, возникающее в одной структуре, тут же охватывает другие.

Половое влечение, голод, жажда - эти наиглавнейшие побудительные причины деятельности всех живых существ связаны, прежде всего, именно с лимбической системой. Так в гипоталамусе располагаются группы клеток, реагирующих на изменения уровня питательных веществ и воды в крови. При низком содержании «еды» в крови эти клетки тут же передают «тревожные» сигналы в высшие отделы коры головного мозга. Вот так и возникают чувства голода и жажды, которые и заставляют наш организм активно заняться поиском пропитания.

Так же интересно, что при поражении лимбического отдела мозга, часто возникают двигательные и психические реакции, которые могут быть абсолютно противоположны: или беспокойство, настороженность, агрессия, стремление бежать или, наоборот: спокойствие, пассивность, умиротворенность. А ведь все дело-то в том, что лимбическая система участвовала в приспособительных реакциях, сложившихся у наших далеких предков на ранних стадиях эволюции, тогда, когда в критических и опасных ситуациях могло быть лишь два варианта спасения: активный – убегать или нападать и пассивный - замаскироваться, спрятаться, затихнуть и замереть. Именно так до сих пор поступает какая-нибудь букашка, замирая на нашей ладони. Ну, правильно, ведь умение быстро приспособиться к изменениям внешней среды, быстро и адекватно отреагировать на опасность - это вопрос жизни и смерти, никак не меньше!

Так вот, главнейшее место в этой приспособительной деятельности принадлежит эмоциям, биологический смысл которых, их биологическое предназначение как раз и заключается в быстрой оценке текущих потребностей организма и стимуляции соответствующего ответа на действие того или иного раздражителя.


Именно в лимбической системе и формируются эмоции, причем в основном в гипоталамусе. Соответственно, изменения лимбических структурах, возникающие, например, при определенных стрессовых состояниях, неврозах, иногда в результате опухоли или нарушения мозгового кровообращения или даже инфекционного заболевания, запросто могут повлечь за собой и нарушение эмоционального равновесия. Болезнь не радость, а значит, и преобладать будут в таких случаях отрицательные эмоции - страх, напряжение, тоска, беспричинная тревога.

Конечно, возможны и прямо противоположные реакции - чрезмерно повышенное настроение, двигательная активность, переоценка своих возможностей, но это уже скажется поражение миндалевидного комплекса.

Сегодня уже не вызывает сомнений, что развитие таких заболеваний, какишемическая болезнь сердца, гипертоническая и язвенная болезни, во многом связано с отрицательными эмоциями. А что это значит? А значит это то, что нормализуя эмоциональные реакции человека, можно избавить его от многих болезней. Ну не зря ж прибаутка то есть, что «все болезни от нервов, и только венерические от удовольствия» ;)

Собственно говоря, как раз на этом принципе и построен эффект психотропных средств, которые прежде всего воздействуют на лимбическую систему, а уже через нее - на функции сердца, сосудов, органов пищеварения. Так что если при жалобах на сердце врач вам назначит не сердечные, а психотропные препараты, не удивляйтесь - это и есть лечение «причины», а не «следствия».

Но и это еще не все заслуги лимбической системы. Лимбическая система, а точнее в основном гиппокамп , принимает активнейшее участие в сложнейших процессах, лежащих в основе памяти. Правда гиппокамп не является длительным хранилищем поступающей в мозг информации, так как эту роль выполняет кора больших полушарий, но зато из-за особенностей анатомического строения вся лимбическая система как будто создана для кратковременного хранения информации. Благодаря переплетению пучков аксонов (помните, отростки нервной клетки?), соединяющих различные образования лимбической системы, в ней формируется ряд больших и малых замкнутых кругов, приспособленных для повторного курсирования нервных импульсов и сохранения возбуждения в течение определенного времени.

Случаи повреждения гиппокампа или хирургического его удаления подтверждают, что эта структура является решающей для запоминания новых событий и хранения их в долговременной памяти, но не необходимой для воспроизведения старых воспоминаний. Например, после удаления гиппокампа больной без труда узнает старых друзей, помнит свое прошлое, может читать и пользоваться ранее приобретенными навыками. Но зато он врядли сможет вспомнить о том, что происходило в течение примерно года до операции. А вот события или людей, встреченных после операции, он не будет помнить вообще. Такой пациент не сможет узнать нового человека, с которым он провел много часов ранее в этот же день. Он будет неделю за неделей собирать одну и ту же головоломку и никогда не вспомнит, что уже собирал ее раньше, будет снова и снова читать ту же газету, не помня ее содержания.

Но для того, что бы это понять, необязательно даже удалять гиппокамп. При поражении гиппокампа алкоголем, у человека так же нарушается память на недавние события. Как показывают наблюдения врачей, алкоголики, находящиеся на лечении в больнице, затрудняются ответить на вопросы о том, обедали они сегодня или нет, когда принимали лекарство, работали ли в мастерской. И в то же время давние события своей жизни они помнят хорошо.

Интересно, а у вас уже возникла мысль о том, что если одно воздействие на гиппокамп «убивает» память, то другое может ее и улучшить? Т.е. нельзя ли воздействием на какой то участок гиппокампа, например, ускорять обучение и запоминание? Эх, это было бы замечательно и уверяю вас, эта мысль уже пришла в голову ученым! Ну, а пока учителям и педагогам следует учесть тот факт, что интересное изложение материала способствует лучшему - более быстрому, полному и на более длительный срок усвоению информации. И объясняется это просто, дело в том, что интересный рассказ или интересное объяснение материала вызывает эмоциональное возбуждение и как бы настраивает на более высокий уровень всю лимбическую систему, в том числе и «зав.памятью» памятью гиппокамп.

Ну, а теперь, временно упуская из виду мозолистое тело, переходим к Бооооольшому мозгу и коре его полушарий.

Итак, основу большого мозга составляют два больших полушария. На первый взгляд, их поверхность кажется беспорядочным нагромождением возвышающихся извилин и разделяющих их борозд. Но на самом-то деле у каждой извилины и борозды свое место и предназначение.

В то же время, как утверждают ученые, нет двух оди­наковых экземпляров мозга с полностью совпадающим рисунком по­верхности. Так что рисунок борозд и извилин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, но, в то же время, отличается некоторым семейным сходством. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие же не столь постоянны, и их приходиться еще и поискать. Кроме того, различие борозд и извилин так же проявляется в их длине, глубине, прерывистости и многих других, более индивидуальных особенностях.

Так вот, поверхность этих борозд да извилин покрыта корочкой серого вещества. Трудно поверить, но секрет превосходства человека над его «братьями меньшими» находится именно в ней. Прикиньте, её толщина не больше слоя масла на бутерброде, но за то какой эффект! Именно благодаря этой серой корочке человек и становиться ЧЕЛОВЕКОМ, творцом, мыслителем, покорителем и завоевателем всеё и всея.

Конечно же, по-научному она называется более весомо и солидно – кора больших полушарий, а по латыни это звучит как «Cerebral cortex», что, собственно, и означает «мозговая или умственная кора».

Сама по себе кора мозга имеет серый цвет, потому как состоит, в основном, из тел нервных клеток и нервных волокон серого цвета. Собственно говоря, отсюда и взялся термин «серое вещество». А вот внутренняя часть большого мозга, находящаяся под корой, состоит из аксонов этих самых нервных клеток , покрытых особым веществом миелином, придающим им белый окрас. Именно поэтому, то, что у нас спрятано под «серым веществом», еще называют «белым веществом» головного мозга.

Так вот, площадь коры большого мозга одного полушария человека составляет около 800 кв. см., толщина - 1,5-5 мм. (нифига себе слой маслица!!! :)), а количество нейронов в коре может достигать 10 млрд.

Сама же по себе кора больших полушарий имеет слоистое строение, поэтому различают древнюю, старую и новую кору (соответственно: палео-, архи- и неокортекс) Блин, такое ощущение, что кто-то проводил у нас в голове археологические раскопки. :)

Но как бы то ни было, а новая кора занимает 95,6% поверхности полушарий большого мозга, и большая ее часть имеет 6 слоев или пластинок: молекулярную, наружную зернистую, наружную пирамидную, внутреннюю зернистую, внутреннюю пирамидную, полиморфную, причем степень развития этих пластинок и их клеточный состав неодинаковы в разных частях полушария.

А вот нервные волокна коры бывают всего двух типов: радиальные - расположенные перпендикулярно ее поверхности, и тангенциальные - идущие параллельно поверхности коры. Получается, что нейронам в нашей голове важно дружить друг с другом и как можно теснее и крепче, поэтому они и связанны между собой и по горизонтали и по вертикали.

Сами по себе полушария головного мозгасоединены между собой не гвоздиками, не шурупчиками, не клеем и даже не примотаны друг к другу скотчем, а соединяются они между собой мозолистым телом - эдакимсплетением нервных волокон соединяющих правое и левое полушария. Конечно же, кроме мозолистого тела, полушария соединяют еще передняя спайка, задняя спайка и спайка свода, но мозолистое тело, состоящее из более чем двухсот миллионов нервных волокон, является самой большой и важной структурой, соединяющей оба полушария.

Так вот, мозолистое тело представляет собой широкую плоскую полосу, состоящую из аксонов. По большей части их волокна в мозолистом теле проходят поперечно, связывая симметричные места противоположных полушарий, но некоторые, особо «хитрые» аксоны умудряются связывать совсем несимметричные места противоположных полушарий, например лобные извилины с теменными или затылочными, или разные участки одного и того же полушария (так называемые ассоциативные волокна )

ЗОНЫ МОЗГА

Ну, продолжим. Борозды и извилины коры большого мозга увеличивают ее поверхность без увеличения объема полушарий, что, согласитесь, актуально в ограниченном пространстве нашего черепа. Кроме того, самые крупные борозды еще и «делят» каждое полушарие нашего мозга на четыре доли: лобную, теменную, затылочную и височную.

Но, кроме такого вот географического, а точнее топографического деления, кору головного мозга принято еще разграничивать и по функциональному признаку.

Сейчас поясню: каждая из наших сенсорных систем, например, зрительная ,слуховая , осязательная , отправляет свою информацию в определенные участки коры. Так же свой участок коры выделен для контроля движения частей тела - т.е. моторных реакций. Остальная же часть коры, не являющаяся ни сенсорной, ни моторной, выделена нам матушкой природой под ассоциативные зоны, которые отвечают за память, мышление, речь, и занимают, кстати, большую часть мозговой коры.

Вот и получается, что по своим функциям участки коры делятся на сенсорные, моторные (двигательные) и ассоциативные зоны.

Конечно же, сенсорные и моторные зоны располагаются на обоих полушариях, но есть и такие функции, которые представлены только на одной, как правило, левой стороне мозга. К ним относятся зона Брока и зона Вернике, участвующие в порождении и понимании речи, а так же угловая извилина, соотносящая зрительную и слуховую формы слова.

Еще не задались вопросом, почему я написал «как правило, на левом полушарии»? А все дело то в том, что у правшей речевые центры действительно расположены в левом полушарии, а вот у левшей - в правом.

Но, есть и другое разделение коры головного мозга - так называемая картаполей Бродмана. В 1903 годугерманский анатом, физиолог, психолог и психиатр К. Бродман опубликовал описание пятидесяти двухцитоархитектонических полей , которые представляют собой участки коры головного мозга, различные по своему клеточному строению. Каждое такое поле отличается по величине, форме, расположению нервных клеток и нервных волокон и, конечно же, различные поля связаны с различными функциями головного мозга. На основании описания этих полей и была составлена карта полей Бродмана.

Но, давайте все же по порядку.

СЕНСОРНЫЕ И МОТОРНЫЕ ЗОНЫ МОЗГА

Итак, моторная зона. Моторная зона уютно расположилась как раз перед центральной бороздой (поля 4,6,8) и занимается тем, что контролирует произвольные движения тела. Причем, большие участки этой зоны регулируют сокращения мышц пальцев рук, губ и языка, осуществляющие многочисленные и очень тонкие движения (например, речь, письмо, игра на фортепиано). А вотмышцам спины , живота и нижних конечностей, участвующим в поддержании позы и осуществлении менее тонких движений, отведена лишь небольшая область двигательной зоны.

Забавно, но наше тело представлено в моторной зоне как бы в перевернутом виде, т.е., например, за движения ног отвечает верхняя часть зоны, а за движения глаз или губ - нижняя. Кроме того, движениями правой части тела управляет моторная кора левого полушария, а движениями левой части - моторная кора правого полушария.

Электрическая стимуляция определенных участков моторной коры (т.е. кто-то все же тыкал нам в мозг оголенными проводами) заставляет двигаться соответствующие части тела, соответственно, если эти же участки моторной коры повредить, то и движения нарушатся.

Сенсорные зоны.

В теменной зоне, отделенной от моторной зоны центральной бороздой, (поля 1,2,3,5,7) находится участок, отвечающий за прием сигналов от рецепторов поверхности кожи тела человека, который носит гордое имя соматосенсорной зоны. Именно здесь происходит определение места и силы раздражения на поверхности тела, здесь же происходит различение местоположения и силы двух одновременно наносимых раздражителей, (так называемая дискриминация) и именно здесь же определяется и само качество раздражителя: острота, шероховатость, температура, т.е. ощущения тепла, холода, прикосновения, боли и ощущения движений тела.

Интересно что, как и в моторной зоне, на верхние отделы соматосенсорной зоны выведены рецепторы кожи нижних конечностей, на средние - туловища, на нижние отделы - рук, головы и т.д. Причем, так же как и в моторной зоне, правая часть мозга «чувствует» левую сторону нашего тела, ну, а левая - правую. Кроме того, как и в моторной, наибольшую поверхность соматосенсорной зоны занимают рецепторы рук, голосового аппарата и лица, а меньшую часть - рецепторы туловища, бедер и голени.

Именно поэтому ученые и считают, что размер соматосенсорной или моторной зоны, связанной с определенной частью тела, напрямую зависит от ее чувствительности и от частоты ее использования, причем эта зависимость наблюдается не только у человека, но и у животных. Например, у собаки передние лапы представлены только на очень небольшом участке коры, а вот у енота, который очень активно пользуется передними лапами для изучения окружающего мира, полоскания белья, и прочих норо-уборочных мероприятий (шучу), соответствующая зона значительно больше, и в ней даже есть участки для каждого пальца лапы. Да и у крыс, получающих много информации с помощью чувствительных усиков, то же имеется свой участок коры для каждого отдельного уса.

Продолжаем.

В задней части каждой затылочной доли есть участок коры (17,18,19 поля Бродмана), называемый зрительной зоной . Как-то неожиданно, но, тем не менее то, что мы видим, глазами, т.е. спереди, «отражается» у нас на затылке, т.е. сзади. Причем, обратите внимание - каждый зрительный нерв делится в области основания мозга на две половины, одна из них идет к своей половине мозга, а другая - к противоположной (т.е. образует неполный перекрест).


1. Сетчатка глаза. 2. Зрительный нерв 3. Зрительные пути и зрительная зона.

Получается, что волокна от правых сторон обоих глаз идут в правое полушарие мозга, а волокна от левых сторон обоих глаз идут в левое полушарие. Поэтому, удаление или повреждение зрительной зоны на одной половине мозга вызывает слепоту на одной половине каждого глаза. Этим фактом умело пользуются медики, устанавливая местоположение опухоли мозга и других аномалий, в зависимости от того, какая часть глаза не видит.

Так вот, центральный зрительный путь заканчивается в поле 17, и сообщает о наличии и интенсивности зрительного сигнала. А уже в полях 18 и 19 анализируются цвет, форма, размеры и качества предметов, причем поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет – так называемая зрительная агнозия, при этом утрачивается еще и цветовая память.

Слуховая зона. Слуховая зона находится на поверхности височных долей обоих полушарий (поля 41, 42, 22) и участвует в анализе сложных и не очень сложных слуховых сигналов. Именно здесь выделяется громкость, высота, тембр звука, определяется местоположение его источника, направление движения, изменение расстояния от источника, речеподобность по звучанию и многое-многое другое.

Оба наших уха имеют свои «официальные представительства» в обоих полушариях за счет того, что слуховые нервы, так же как зрительные, частично идут к «своему» полушарию, но, все же, большая их часть, перекрещиваясь, направляется в противоположные уху участки слуховой зоны коры. Так что и тут - левое ухо, в основном, слышит правое полушарие, а правое - левое.

Ну, и, конечно же, при разрушении 22 поля - возникают слуховые галлюцинации, сопровождающиеся нарушением слуховых ориентировочных реакций, музыкальная глухота и прочие неприятности, а при разрушении 41 поля – даже корковая глухота. Вот.

Другие же сенсорные функции, такие как вкус, обоняние, чувство равновесия , в меньшей степени представлены в коре головного мозга и рассказывать то о них, в общем то и нечего, за исключением того, что обонятельная системарасполагается в 34 поле Бродмана, и ее повреждение вызывает обонятельные галлюцинации. Вкусовая зона соседствует с обонятельной и обосновалась на 43 поле, что не удивительно, так как обоняние и вкус очень тесно между собой взаимосвязаны, о чем вот тут уже говорилось.

АССОЦИАТИВНЫЕ ЗОНЫ КОРЫ ГОЛОВНОГО МОЗГА. ЦЕНТРЫ СЛУХА И РЕЧИ

Как уже говорилось, в коре нашего мозга есть много обширных и бескрайних зон, не связанных непосредственно с сенсорными или моторными процессами. Они называются ассоциативными зонами и занимают около 80% территории коры.

Так вот, каждая такая ассоциативная область коры тесно связана сразу же с несколькими проекционными (сенсорными или моторными) зонами. Поэтому и считается, что в ассоциативных областях происходит ассоциация (а попросту соединение или совмещение) разно сенсорной информации, в результате чего и формируются сложные элементы нашего сознания.

Наибольшие места скопления и обитания ассоциативных областей у человека обнаружены в лобной, затылочно-теменной и височной и областях .

Вообще, каждая проекционная область коры, будь то сенсорная или моторная, окружена ассоциативными областями, причем нейроны этих областей чаще полисенсорны, т.е. умеют реагировать на различные сигналы, поступающие от слуховой, зрительной, кожной и других систем. И вот именно эта вот полисенсорность нейронов позволяет им объединять сенсорную информацию и организовывать и координировать взаимодействие сенсорных и моторных областей коры.

Итак, лобные доли являются ответственными за осуществление высших психических функций, которые проявляются в формировании личностных качеств, разнообразных творческих процессов и влечений.

При повреждении лобных отделов коры большого мозга, резко нарушается построение целенаправленного поведения, основанного на предвидении.

Что это такое? Сейчас поясню:
Например, у обезьян, повреждение этих самых лобных долей нарушает их способность решать задачи с отсроченной ответной реакцией. Проведите такой вот эксперимент: найдите где-нибудь такую вот больную обезьянку и на ее глазах поместите еду в одну из двух чашек, а чашки накройте одинаковыми предметами. Затем между обезьяной и чашками поставьте ненадолго непрозрачный экран. Потом экран уберите, и пусть обезьянка выберет одну из этих чашек. Так вот, нормальная обезьяна запомнит нужную чашку после задержки в несколько минут, а вот наша, болезлая, с поврежденными лобными долями, увы, не сможет решить эту задачу, если задержка превысит всего то несколько секунд. Это и будет отсроченная ответная реакция, а точнее - ее отсутствие, т.е. такие обезьяны просто-напросто не запоминают то, что было совсем недавно из-за «поломки» нужных нейронов в лобных долях. Что уж говорить о людях…

Далее.В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря соединению и сопоставлению соматосенсорной (чувствительной), проприоцептивной (Проприоцепция - способность воспринимать положение и перемещение в пространстве собственного тела, ну или отдельных его частей) и зрительной информации.

При повреждении наружной поверхности затылочной доли, не проекционной, а ассоциативной зрительной зоны, зрение сохранится, но тут же наступит расстройство узнавания – так называемая зрительная агнозия. Такой человек, будучи абсолютно грамотным, не сможет прочесть написанное, и будет в состоянии признать знакомого человека только после того, как тот заговорит. Ну не узнает он его «глазами» и все тут!

Продолжаем.В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого полушария). Эта зона асимметрична - у правшей она находиться в левом, а у левшей – в правом полушарии.

Задача этого центра – распознавание и хранение устной речи, как собственной, так и чужой. При поражении слухового центра речи человек может го­ворить, излагать устно свои мысли, но не понимает чужой речи, и хотя слух и сохранен - человек не узнает слов. Такое вот состояние назы­вается сенсорной слуховой афазией. Такой человек часто много говорит (логорея), но речь его неправильная (аграмматизм), при этом наблюдается замена слогов и слов (парафазии).

Но, речевая функция связана не только с сенсорной, но и с двигательной системой. И такой вот двигательный центр речи у нас действительно имеется. Он рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще всего левого полушария (опять же правши и левши) и был описан вначале господином Даксом в 1835 году, а затем уже господином Брока в 1861 году. При поражении моторного центра речи развивается моторная афазия - в этом случае человек понимает речь, но сам, увы, говорить не может.

В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. А на границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи. Понятно, что поражения этого центра приводят к невозможности чтения и письма.

Кстати, оба этих центра так же ассиметричны и находятся в разных полушариях у левшей и правшей.

Так же в височной области расположено поле 37, отвечающее за запоминание слов. Люди с поражениями этого поля не помнят названия предметов. При этом они очень напоминают забывчивых людей, которым постоянно приходится подсказывать нужные слова. Такой человек, забыв название предмета, четко помнит его назначение и свойства, поэтому долго опи­сывает его качества, объясняет, что делают с этим предметом, но назвать его, хоть убей, не может. Ну, например, вместо слова «галстук» человек, глядя на него, говорит примерно следующее: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Так же с височной корой связывают функцию памяти и сновидений.

Включайся в дискуссию
Читайте также
Православная художественная литература
Православная художественная литература
Старообрядчество и Русская Православная Церковь: От конфронтации к диалогу