Подпишись и читай
самые интересные
статьи первым!

Какая карликовая планета была открыта первой. Карликовые планеты — объяснение для детей. Другие кандидаты на звание карликовая планета

Карликовые планеты Плутон, Хаумеа, Макемаке, Эрида и другие крупные транснептуновые объекты в сравнении по размеру, альбедо и цвету. Показаны также их спутники.

Карликовая планета, согласно определению Международного астрономического союза, - небесное тело, которое:

обращается по орбите вокруг ;
имеет достаточную массу для того, чтобы под действием сил гравитации поддерживать гидростатическое равновесие и иметь близкую к сферической форму;
не является ;
не может расчистить район своей орбиты от других объектов.

Термин «карликовая планета» был принят в 2006 году в рамках классификации обращающихся вокруг Солнца и других тел на три категории. Тела, достаточно большие для того, чтобы расчистить пространство в полосе своей орбиты, определены как планеты, а недостаточно большие, чтобы достичь даже гидростатического равновесия, - как или . Карликовые планеты занимают промежуточное положение между этими двумя категориями. Данное определение встретило как одобрение, так и критику, и до сих пор оспаривается некоторыми учёными. Например, в качестве простейшей альтернативы ими предлагается условное разделение между планетами и карликовыми планетами по размеру или даже : если больше то - планета, если меньше - планетоид.

Международным астрономическим союзом официально признаны 5 карликовых планет: крупнейший астероид и – , ; однако возможно, что по меньшей мере ещё 40 из известных объектов в принадлежат к этой категории. По различным оценкам учёных, может быть обнаружено до 200 карликовых планет в и до 2000 карликовых планет за его пределами.

Классификация тел с характеристиками карликовых планет в других планетных системах не определена.

Список карликовых планет

В 2006 МАС официально назвал три тела, которые сразу получили классификацию карликовых планет - бывшая планета Плутон, считавшаяся крупнейшим транснептуновым объектом, Эрида и крупнейший астероид Церера. Позже карликовыми планетами были объявлены ещё два транснептуновых объекта. Термин «карликовая планета» следует отличать от понятия «малая планета», которым исторически называют также и астероиды.

Карликовые планеты и Седна
Название Церера Плутон Хаумеа Макемаке Эрида Седна
Номер по ЦМП 1 134340 136108 136472 136199 90377
Обозначения A899 OF; 2003 EL 61 2005 FY 9 2003 UB 313 , 2003 VB 12
Район

Солнечной системы

Пояс астероидов Пояс Койпера Пояс Койпера Пояс Койпера Рассеянный диск Облако Оорта
Диаметр (км) 963×891 2370±20 1960×1518×996 1478±34 2326±12 995±80 км
Масса в кг 9,4±0,1·10 20 1,305·10 22 4,2·10 21 ~3·10 21 кг ~1,67·10 22 8,3·1020-7,0·1021 кг
Средний

экваториальный

радиус*
то же в км

0,0738
471
0,180
1148,07
~750 0,19
~1300
Объём* 0,0032 0,053 0,013 0,013 0,068
Плотность (т/м³) 2,161 1,86 2,6 g/cm³ 1,7±0.3 г/см³ 2,52 2,0? г/см³
Ускорение

свободного

падения на

экваторе (м/с²)

0,27 0,60 ~0,44 м/с² ~0,4 м/с² ~0,68 0,33-0,50 м/с²
Первая

космическая

скорость (км/с)

0,51 1,2
Период обращения

[Т ] (сутки)

9 ч 4 мин 27,01 с −6,387 земного (3,9154± 7,771±0,003 25,9 ч 0,42 д (10 ч)
Период

вращения
(в сидерических

0,3781 −6,38718 (ретро-градный) 102937 д 111867 сут (306,28 года) 203 830 сут (558,04 года) примерно 4 404 480д (12 059,06 a)
Радиус орбиты * (а. е.)
большая полуось *
то же в км
2,5-2,9
2,766
413 715 000
29,66-49,30
39,48168677
5 906 376 200
37,77-97,56
67,6681
10 210 000 000
541,429506 а. е.
Период

обращения * (лет)

4,599 248,09 281,83 306,28 557 12059,06
Средняя

орбитальная

скорость (км/с)

17,882 4,666 4,484 км/с 4,419 км/с 3,437 1,04 км/с
Эксцентриситет 0,080 0,24880766 0,1975233 0,16254481 0,44177 0,8590486
Наклонение 10,587° 17,14175° 28,201975° 29,011819 ° 44,187° 11,927945°
Наклонение

плоскости

экватора к

плоскости орбиты

119,61°
Температура (°С) -106,15 -233,15 -223 °C -240,65 −253 °C
Средняя

температура поверхности (К)

167 40 50 К 30-35 К (на основании 30
Количество известных

спутников

0 5 2 1 1 0
Перигелий 381 028 000 км(2,5465 а. е.) 29,667 а. е 34,494401 38,050866 а. е. 37,911 а. е. 76,315235 а. е.
Афелий 446 521 000 км(2,9842 а. е.) 49,31 а. е. 51,475447 а. е. 52,821736 а. е. 97,651 а. е. 1006,543776
Дата открытия 1 января 1801 18 февраля 28 декабря 2004 31 марта 2005 5 января 2005 14 ноября 2003
Первооткры- Пиацци, Джузеппе Клайд Майкл Браун, Хосе

Луис Ортис

Майкл Браун,

Чедвик Трухильо,

Рабиновиц

Майкл Браун,Чедвик Трухильо,

Дэвид Рабиновиц

М. Браун,Ч. Трухильо,

Д. Рабинович

Абсолютная звёздная

величина

3,36 ± 0.02 0,02 m −0,44 -1,17+0,06
Видимая

звёздная

величина

от 6,7 до 9,32 >13,65 17,3m 16,7 18,7
Альбедо 0,090 ± 0,0033 0,4-0,6 (Бонда),0,5-0,7 (геом.) 0,84 +0,1 0,77±0,030,782 +0,103 −0,086 0,96+0,09 0,32±0,06

* Значение в сравнении с Землёй.

Из этого списка только Плутон был «понижен в звании», став карликовой планетой и потеряв статус планеты, а остальные - наоборот, «повышены», перестав быть просто одними из астероидов.

Другие кандидаты

Уже известны несколько десятков тел, которые потенциально могут квалифицироваться как карликовые планеты.

Статус Харона, который сейчас рассматривается как спутник Плутона, остаётся неокончательным, так как в настоящее время нет точного определения по разграничению планет со спутником от двойных планетных систем. Проект резолюции, опубликованный МАС, указывает, что Харон может рассматриваться как планета, потому что:

Харон сам по себе удовлетворяет критериям по размерам и форме для статуса планеты (в терминах последней резолюции, для статуса карликовой планеты).

Вероятные претенденты на статус карликовой планеты
Название Категория Диаметр Масса
Кьюбивано в поясе Койпера 400-800 км неизвестна
Объект рассеянного диска ~1535 км неизвестна
Кьюбивано в поясе Койпера 1074-1170 км 1,0-2,6·10 21 кг
Кьюбивано в поясе Койпера ~934 км неизвестна
Плутино в поясе Койпера 917-946 км 6,2-7,0·10 20 кг
Кьюбивано в поясе Койпера ~921 км 4,5·10 20
Объект рассеянного диска ~733 км неизвестна
Кьюбивано в поясе Койпера 722 км ~5,9·10 20 кг
Кьюбивано в поясе Койпера 681-910 км ~7,9·10 20 кг
Плутино в поясе Койпера ~650 км 5,8·10 20
Кьюбивано в поясе Койпера 626-850 км ~4,1·10 20 кг
Кьюбивано в поясе Койпера 550-1240 км неизвестна
(пояс Койпера) 609-730 км неизвестна
2004 GV 9 Кьюбивано в поясе Койпера ~677 км неизвестна
2002 TC 302 Объект рассеянного диска 590-1145 км 1,5·10 21
2003 AZ 84 Плутино в поясе Койпера 573-727 км неизвестна
2004 XA 192 Кьюбивано в поясе Койпера 420-940 км неизвестна
2010 RE 64 Кьюбивано в поясе Койпера 380-860 км неизвестна
2010 RF 43 Кьюбивано в поясе Койпера ~613 км неизвестна
Хаос Кьюбивано в поясе Койпера ~600 км неизвестна
2007 UK 126 Объект рассеянного диска ~600 км неизвестна
2003 UZ 413 Кьюбивано в поясе Койпера ~591 км неизвестна
2006 QH 181 Объект рассеянного диска 460-1030 км неизвестна
2010 EK 139 Объект рассеянного диска 470-1000 км неизвестна
2010 KZ 39 Объект рассеянного диска 440-980 км неизвестна
2001 UR 163 Объект рассеянного диска ~636 км неизвестна
2010 FX 86 Объект рассеянного диска ~598 км неизвестна
2013 FZ 27 Объект рассеянного диска ~595 км неизвестна
2012 VP 113 Объект рассеянного диска ~595 км неизвестна
2008 ST 291 Объект рассеянного диска ~583 км неизвестна
2005 RM 43 Объект рассеянного диска ~580 км неизвестна
1996 TL 66 Объект рассеянного диска ~575 км 2·10 20
2004 XR 190 «Баффи» Объект рассеянного диска 425-850 км 0,6-4,8·10 20
2004 NT 33 Кьюбивано в поясе Койпера 423-580 км неизвестна
2004 UM 33 Кьюбивано в поясе Койпера 340-770 км неизвестна
2002 XW 93 Объект рассеянного диска 565-584 км неизвестна
2004 TY 364 Кьюбивано в поясе Койпера ~554 км неизвестна
2002 XV 93 Плутино в поясе Койпера ~549 км неизвестна

Статус Харона, который сейчас рассматривается как спутник Плутона, остаётся неокончательным, так как в настоящее время нет точного определения по разграничению планет со спутником от двойных планетных систем. Проект резолюции (5), опубликованный МАС, указывает, что Харон может рассматриваться как планета, потому что:

  1. Харон сам по себе удовлетворяет критериям по размерам и форме для статуса карликовой планеты.
  2. Харон, по причине его большой массы по сравнению с Плутоном, обращается с Плутоном вокруг общего центра масс, расположенного в космосе между Плутоном и Хароном, а не вокруг точки, находящейся внутри Плутона.

Этого определения, однако, нет в окончательном решении МАС. Неизвестно также, появится ли оно в будущем. Если подобное определение будет одобрено, Харон будет рассматриваться как карликовая (двойная) планета. Для скорейшего решения этого вопроса сейчас обсуждается принятие в качестве дополнительного критерия - приливной взаимозахват или синхронность вращения обоих компонентов двойной системы.

Помимо Харона и всех остальных кандидатов-транснептуновых объектов, три крупных объекта в поясе астероидов (Веста, Паллада и Гигея) должны будут классифицироваться как карликовые планеты, если окажется, что их форма определяется гидростатическим равновесием. К настоящему времени это убедительно не доказано.

Размер и масса карликовых планет

Нижний и верхний пределы размера и массы карликовых планет не указаны в решении МАС. Нет строгих ограничений на верхние пределы, и объект больше или массивнее Меркурия с неочищенными окрестностями орбиты может классифицироваться как карликовая планета.

Нижний предел определяется понятием гидростатически равновесной формы, однако размер и масса объекта, который достиг такой формы, неизвестен. Эмпирические наблюдения наводят на мысль, что они могут сильно различаться в зависимости от состава и истории объекта. Первоисточник предварительного решения МАС, определяющего гидростатически равновесную форму, применяется «к объектам с массой более 5·1020 кг и диаметром более 800 км», однако это не вошло в окончательное решение 5A, которое было одобрено.

По мнению некоторых астрономов, новое определение означает прибавление до 45 новых карликовых планет.



Согласно определению, принятому МАС в 2006 году, карликовая планета — это «небесное тело на орбите звезды, которое достаточно массивно, чтобы округляться за счет собственной гравитации, но не очищать ближайший регион от планетезималей, и не является спутником. Кроме того, оно должно обладать достаточной массой для преодоления предела прочности на сжатие и достижения гидростатического равновесия».

В сущности, этот термин означает любой объект с планетарной массой, не являющийся ни планетой, ни естественным спутником, который отвечает двум базовым критериям. Во-первых, он должен быть на прямой орбите Солнца и не являться луной вокруг другого тела. Во-вторых, он должен быть достаточно массивным, чтобы обрести сферическую форму под действием собственной силы тяжести. И, в отличие от планеты, он не должен очищать окрестности вокруг своей орбиты.

Размер и масса

Для того чтобы тело округлилось, оно должно быть достаточно массивным, чтобы гравитация стала доминирующей силой, влияющей на форму тела. Порожденное этой массой внутреннее давление приведет к тому, что поверхность станет пластичной, будет сглаживать высокие подъемы и заполнять впадины. С мелкими телами размером менее километра в диаметре такого не происходит (вроде астероидов), ими управляют силы за пределами их собственных гравитационных сил, которые, как правило, поддерживают неправильные формы.

Крупнейшие известные транснептуновые объекты (ТНО)

Между тем, тела в несколько километров поперечником - когда сила тяжести существенная, но не доминирующая - принимают форму сфероида или «картошки». Чем больше тело, тем выше его внутреннее давление, пока не станет достаточным, чтобы преодолеть внутреннюю силу сжатия и достичь гидростатического равновесия. В этот момент тело становится настолько круглым, насколько вообще может быть, учитывая его вращение и приливные эффекты. Это определение предела карликовой планеты.

Тем не менее вращение также может повлиять на форму карликовой планеты. Если тело не вращается, оно будет сферой. Чем быстрее оно вращается, тем более вытянутым или разносторонним оно станет. Экстремальный пример такого - это Хаумеа, которая почти в два раза длиннее на основной оси, чем на полюсах. Приливные силы также приводят к тому, что вращение тела постепенно становится приливно заблокированным, и тело остается обращенным к компаньону одной стороной. Крайний пример такой системы - Плутон — Харон, оба тела приливно заблокированы между собой.

Верхние и нижние пределы размера и массы карликовых планет МАС не определяет. И хотя нижняя граница определяется достижением равновесной гидростатической формы, размер или масса, при которой этот объект достигает такой формы, зависит от его состава и термической истории.

К примеру, тела из жестких силикатов (вроде каменистых астероидов) должны достигать гидростатического равновесия при диаметре порядка 600 километров и массе 3,4 х 10^20 кг. Для менее жесткого тела из водного льда такой предел будет ближе к 320 км и 10^19 кг. В результате на сегодняшний день не существует конкретного стандарта для определения карликовой планеты в зависимости от ее размера или массы, а вместо этого он обычно определяется на основе его формы.

Орбитальное положение

В дополнение к гидростатическому равновесию, многие астрономы настояли о проведении черты между планетами и карликовыми планетами на основе их неспособности «очищать окрестности своей орбиты». Короче говоря, планеты могут убирать меньшие тела рядом со своими орбитами путем столкновения, захвата или гравитационного возмущения, тогда как карликовые планеты не обладают необходимой массой, чтобы достичь этого.

Для расчета вероятности того, что планета очистит свою орбиту, планетологи Алан Штерн и Гарольд Левинсон представили параметр, который они обозначают буквой «лямбда».

Этот параметр выражает вероятность столкновения в зависимости от заданного отклонения орбиты объекта. Значение этого параметра в модели Штерна пропорционально квадрату массы и обратно пропорционально времени и может быть использовано для оценки потенциала тела очищать окрестности своей орбиты.

Астрономы вроде Стивена Сотера, ученого Нью-Йоркского университета и научного сотрудника Американского музея естественной истории, предлагают использовать этот параметр для проведения черты между планетами и карликовыми планетами. Сотер также предложил параметр, который он называет планетарным дискриминантом - обозначается буквой «мю» - который рассчитывается путем деления массы тела на общую массу тел других объектов на той же орбите.

Признанные и возможные карликовые планеты

В настоящее время есть пять карликовых планет: Плутон, Эрис, Макемаке, Хаумеа и Церера. Только Церера и Плутон наблюдались достаточно, чтобы быть бесспорно вписанными в эту категорию. МАС постановил, что безымянные транснептуновые объекты (ТНО) с абсолютной величиной ярче, чем +1 (и математически ограниченные минимальным диаметром в 838 км) должны быть причислены к карликовым планетам.

Возможные кандидаты, которые находятся в настоящее время под рассмотрением, включают Орк, 2002 MS4, Салацию, Квавар, 2007 OR10 и Седну. Все эти объекты расположены в поясе Койпера; за исключением Седны, которая рассматривается отдельно - отдельным классом динамических ТНО во внешней Солнечной системе.

Вполне возможно, что в Солнечной системе есть еще 40 объектов, которые могут быть справедливо обозначены карликовыми планетами. По оценкам, до 200 карликовых планет могут найти в поясе Койпера после его изучения, а за пределами этого пояса их число может превзойти 10 000.

Разногласия

Сразу после решения МАС касательно определения планеты, ряд ученых выразил свое несогласие. Майк Браун (лидер группы Калтеха, которая обнаружила Эрис) соглашается с сокращением числа планет до восьми. Тем не менее ряд астрономов вроде Алана Штерна по поводу определения МАС.

Штерн утверждает, что, подобно Плутону, Земля, Марс, и Нептун тоже не полностью очищают свои орбитальные зоны. Земля вращается вокруг Солнца с 10 000 околоземных астероидов, которые по оценке Штерна противоречат очищению орбиты Земли. Юпитер, между тем, сопровождается 100 000 троянских астероидов на своем орбитальном пути.

В 2011 году Штерн ссылался на Плутон как на планету и считал другие карликовые планеты вроде Цереры и Эрис, а также крупные луны, дополнительными планетами. Тем не менее другие астрономы утверждают, что хотя крупные планеты и не расчищают свои орбиты, они полностью контролируют орбиты других тел в пределах своей орбитальной зоны.

Другое спорное применение нового определения планет касается планет за пределами Солнечной системы. Методы выявления внесолнечных объектов не позволяют определить напрямую, «очищает ли объект орбиту», только косвенно. В результате в 2001 году МАС утвердил отдельные «рабочие» определения для внесолнечных планет, включающие такой сомнительный критерий: «Минимальные масса/размер, необходимые для того, чтобы считать внесолнечный объект планетой, должны соответствовать параметрам, принятым для Солнечной системы».

Несмотря на то, что за принятие такого определения планет и карликовых планет высказались далеко не все члены МАС, NASA недавно объявило, что будет использовать новые руководящие принципы, установленные МАС. Тем не менее споры о решении 2006 года пока не прекращаются, и мы вполне можем ожидать дальнейшего развития событий на этом фронте, когда будет обнаружено и определено больше «карликовых планет».

По меркам МАС довольно просто определить карликовую планету, но вписать Солнечную систему в трехуровневую систему классификации будет все сложнее по мере расширения нашего понимания Вселенной.

> Карликовые планеты

Вся информация о карликовых планетах Солнечной системы для детей: что это такое, размеры, список карликовых планет с фото, большие Плутон и Церера, расстояние.

Начать объяснение для детей родители или учителя в школе могут с того, что карликовые планеты Солнечной системы - небольшие миры, чьи размеры не позволяют им стать полноценными планетами. Однако они слишком крупные, чтобы переместиться в другую категорию.

Можно объяснить детям ситуацию на примере Плутона. В свое время он наделал много шума, да и сейчас не прекращаются споры о его статусе. Он больше не играет роли девятой планеты и сместился на позицию карликовых.

Для самых маленьких будет интересно узнать, что на данный момент может существовать до 200 карликовых планет. Но не все дети и даже родители понимают разницу между карликом и полноценной планетой. Далее вы узнаете много интересных фактов о карликовых планетах Солнечной системы, познакомитесь с описанием миров, вроде Плутона и Эриды, а также сумеете рассмотреть их на фото, рисунках, картинках и схемах. Интересно также понять откуда пришли названия и как выглядят орбиты карликовых планет.

Карликовые планеты - объяснение для детей

Основное определение дает Международный астрономический союз (МАС). Согласно ему, планета должна вращаться вокруг Солнца, обладать достаточной гравитацией, чтобы стать сферой и очистить орбиту от мелких объектов. Особенно важным будет последнее требование. Гравитация притягивает или отталкивает другие объекты в своей орбите. У карликов ее недостаточно, чтобы соответствовать.

На 2015 год МАС признает и перечисляет 5 карликовых планет: Церера, Плутон, Эрида, Хаумеа и Макемаке. Есть также и кандидаты (Седна и Кваваре), расположенные за орбитой Плутона, и объект 2012 VP113, обладающий одной из наиболее отдаленных орбит. НАСА считают, что есть, по крайней мере, еще 100 карликов, ожидающих своего обнаружения.

Но споры о статусе Плутона подогреваются с каждым годом. Причем миссия Новые Горизонты может сыграть в этом главную роль.

Многие считают требование с «очисткой орбиты» чем-то абсурдным и неправильным. Заступился за Плутон и ученый Алан Стерн. В конце 2014 года в Гарвард-Смитсоновском университете провели трансляцию «Что такое планета?», после чего аудитория проголосовала за планетарный статус Плутона.

Начать объяснение для детей стоит с того, что Церера - самая ранняя и маленькая карликовая планета. Ее в 1801 году нашел астроном из Италии Джузеппе Пьяцци. Занимает в диаметре 950 км, а масса достигает лишь 0.015% земной.

Она настолько крошечная, что классифицируется сразу как карлик и астероид. Составляет ¼ массы всех астероидов, но проигрывает в размере Плутону. Обладает практически круглым телом и скалистым составом с возможностью наличия водяного льда. В 2014 году был замечен выброс водяного пара из двух участках карлика.

Плутон - наиболее известный и популярный по обсуждениям карлик. Его открыли в 1930 году, и как планета продержался до 2006 года. Его орбита необычна, потому что периодически становится к Солнцу ближе Нептуна.

Хотя он достигает лишь 0.2% земной массы и 10% массы нашей Луны, но его гравитации хватает, чтобы удерживать 5 спутников. Контакт с огромной луной Хароном заставляет ученых рассматривать их как двоичную систему, потому что они совершают вращение вокруг точки между собою.

Когда-то Эриду считали самым крупным карликом (на 27% больше массы Плутона) с диаметром в 2300-2400 км. Именно она заставила МАС по-новому взглянуть на определение планет. Ее орбита неустойчива, поэтому Эрида пересекает маршрут Плутона и даже Нептуна. На орбитальный путь тратит 557 лет. В самой отдаленной точке выходит за границу пояса Койпера.

Наименования им присвоили недавно. Хаумеа привлекает внимание формой – эллипсоид, что является одним из планетарных критериев. Из-за быстрого вращения она вытянута, а по массе в три раза меньше Плутона. На осевой оборот уходит 4 часа, что может объясниться ранним столкновением. На ней также есть красное пятно и слой кристаллического льда. Это единственный объект в поясе Койпера (не считая Плутона), располагающий несколькими лунами.

Макемаке также интересен, ведь у него нет спутника. Из-за этого тяжело определить его массу, хотя диаметр на 2/3 меньше чем у Плутона. Интересно, что если бы не появились новые требования от МАС, то Макемаке мог бы считаться планетой.

Плутоиды

Плутон, Хаумеа, Эрида и Макемаке называют плутоидами. Это подразделение карликов с орбитой вне Нептуна. Иногда их еще именуют ледяными карликами из-за мороза на поверхности и маленького размера. Внешние планеты демонстрируют свой контакт с плутоидами. Например, самая крупная луна Нептуна Тритон может оказаться плутоидом.

Если хотите дополнить характеристику карликовых планет, то всегда можно воспользоваться 3D-моделью Солнечной системы на сайте и рассмотреть карты карликовых планет, особенности их поверхности и движение по орбите вокруг Солнца. Также детям было бы интересно посмотреть на миры в онлайн телескоп в режиме реального времени, но они слишком маленькие и далеко расположены для такого наблюдения. Поэтому рассмотрите фото, картинки и изображения от космических аппаратов.

Объекты за орбитой Нептуна.

>

– небесные тела Солнечной системы: характеристика, особенности, история Плутона, определение, требования к планетам, список и кандидаты.

Термин карликовая планета официально появился в 2006 году, когда за пределами орбиты Нептуна нашли планеты размером с Плутон и крупнее. С того момента карликовыми планетами называют множество тел в Солнечной системе.

Кроме того, понятие вызвало много споров, особенно касательно статуса и природы Плутона. Сейчас МАС признает существование 5 карликовых планет, и примерно две сотни ждут подтверждения. Давайте посмотрим, как выглядит характеристика карликовых планет.

Определение карликовых планет

Карликовой планетой называют небесный объект, который:

  • вращается вокруг Солнца;
  • имеет достаточную массу, чтобы стать почти круглым;
  • но не может очистить свой орбитальный путь.

Если коротко, то так именуют любой объект с планетарной массивностью, но не выступающим планетой или луной. Но тело должно вращаться вокруг Солнца и обладать сферической формой. Ниже представлен список карликовых планет, где указаны их особенности, описание и фото.

Потенциальные карликовые планеты:

Размер и масса карликовых планет

Чтобы тело приобрело округленную форму, ему должно хватать массы, противостоящей собственной гравитации. Тогда внутреннее давление формирует поверхностный слой, гарантируя пластичность, заполняющую возвышения и углубления. С астероидами подобное не случается.

Для небесных тел с диаметром в пару километров наиболее значимой силой является гравитация, поэтому они вытягиваются в виде картофеля. Чем крупнее объект, тем выше уровень внутреннего давления, пока оно не достигнет точки внутреннего баланса. Полюбуйтесь на таблицу главных характеристик карликовых планет, куда включено и описание орбиты.

Название Церера Плутон Хаумеа Макемаке Эрида
Номер по ЦМП 1 134340 136108 136472 136199
Район Солнечной системы Пояс астероидов Пояс Койпера Пояс Койпера Пояс Койпера Рассеянный диск
Размеры (км) 975×909 2306±20 1960×1518 ×996 1500×1420 2326±12
Масса в кг.
Относительно Земли
9,5·10 20
0,00016
1,305·10 22
0,0022
4,2·10 21
0,0007
? ~1,67·10 22
0,0028
Средний экваториальный радиус
то же в км
0,0738
471
0,180
1148,07
~750 ? 0,19
~1300
Объём* 0,0032 0,053 0,013 0,013 0,068
Плотность (г/м³) 2,08 2,0 2.6–3.3 > 1.4 2,5
Ускорение свободного падения на экваторе (м/с²) 0,27 0,60 0.44 ? ≈ 0.8
Первая космическая скорость (км/с) 0,51 1,2 0.84 ? 1.3
Период вращения (суток) 0,3781 −6,38718 (ретроградный) 0.16 0.32 ≈ 1 (0.75–1.4)
Радиус орбиты (а. е.) 2,5-2,9 29,66-49,30 43.13 45.79 67.67
Период обращения (лет) 4,599 248,09 283.28 309.9 557
Средняя орбитальная скорость (км/с) 17,882 4,666 ? 4.419 3,437
Эксцентриситет 0,080 0,24880766 0.195 0.159 0,44177
Наклон орбиты 10,587° 17,14175° 28.22° 28.96° 44,187°
Наклон плоскости экватора к плоскости орбиты 119,61° ? ? ?
Средняя температура поверхности 167 К 44 К 32±3 К ≈ 30 К ≈ 42 К
Количество известных спутников 0 5 2 0 1
Дата открытия 01.01.1801 18.02.1930 28.12.2004 31.03.2005 5.01.2005

Но на внешний вид малых тел Солнечной системы может также влиять вращение оси. Если его нет, то получим сферу. Чем выше скорость, тем заметнее уровень приплюснутости. В итоге объект впадает в крайности, как Хаумеа, которая вдвое длиннее по линии главной оси. Приливные силы замыкают объекты, заставляя показывать лишь одну сторону. Это видно в связи Плутон-Харон.

МАС не предоставили верхнюю и нижнюю границу массы карликовых планет. Но нижняя выводится как точка, позволяющая достигнуть гидростатического баланса. Размер и масса основываются на составе и тепловой истории.

К примеру, силикатные астероиды достигают баланса при диаметре 600 км и массе – 3.4 х 10 20 кг. Если в объекте меньше жесткого водяного льда, то предел составит 320 км и 10 19 кг. Получается, что нет стандарта по размеру или массе. Поэтому в основе пока лежит форма.

Орбитальное доминирование карликовых планет

Многие ученые настаивали на том, чтобы к гидростатическому балансу прибавил способность очистить пространство вокруг себя. В общем, это умение планет устранять меньшие тела рядом с собою, притягивая или отталкивая их. У карликовых просто не хватит массы.

Чтобы определять это, Алан Стерн и Гарольд Левисон представили параметр – лямбда. Ученые вроде Стивена Сотера пользуются им, чтобы отделять карликовые планеты от обычных. Также он выдвинул параметр – планетарный дискриминант (μ), определяемый при делении массы тела на массу других объектов, с которыми разделяет орбиту.

Карликовые планеты и претенденты

В списке карликовых планет Солнечной системы числятся Плутон, Макемаке, Эрида, Хаумеа и Церера. Споров не вызывают лишь первая и последняя. В МАСе определили, что среди транс-нептуновых объектов (ТНО) карликовыми становятся лишь с диаметром от 838 км и ярче 1. На нижней схеме представлено сравнение размеров карликовых планет.

Среди претендентов: Орк, 2002 MS4, Актея, Квавар, 2007 OR10 и Седна. Все они проживают в поясе Койпера или Рассеянном диске. Выделяется Седна, которая стоит в отдельном классе. Полагают, что может быть еще 40 известных объектов, которые следует перевести в категорию карликовых планет. Но существует еще более двух сотен в поясе Койпера, а общее число способно перевалить за 1000.

Споры о карликовых планетах

Когда в МАС приняли новые критерии, многие ученые не согласились и завязался спор. Майк Браун (открывший Эриду) согласился с новыми правилами и уменьшением официального числа планет до 8. А вот Алан Стерн выступил с серьезной критикой.

Он говорил, что Марс, Юпитер, Нептун и Земля также не полностью очистили пространство вокруг себя. С нашей планетой вокруг Солнца вращаются еще 10000 околоземных астероидов, а у Юпитера – 100000 троянцев. Поэтому Стерн упрямо считал Плутон планетой, а Цереру и Эриду – дополнительными.

Также возникают проблемы для классификации экзопланет. Мы можем выделять характеристики лишь косвенно, поэтому не знаем, очистилась ли орбита. Из-за этого появились критерии насчет минимальных массы и размера.

Конечно, это всего лишь образные сравнения. В действительности бывают планеты-гиганты и планеты-карлики.

Планеты-гиганты

Это известные нам планеты, о которых мы уже не раз рассказывали на нашем сайте: Юпитер, Сатурн, Уран, Нептун . Все они расположены за пределами кольца малых планет (астероидов). По своим физическим характеристикам они очень схожи, поэтому их объединяют в одну группу – внешние планеты, или газовые гиганты . Какие же это физические характеристики? Значительно большие размеры и массы (в результате этого давление в их недрах значительно выше), более низкая средняя плотность (близкая к средней Солнечной, 1,4 г/см³), мощные атмосферы, быстрое вращение, а также кольца (в то время как у планет земной группы их нет) и бо́льшее количество спутников.
Почему эти планеты-гиганты называют газовыми? Потому что в основном они состоят из газа (преимущественно из водорода и гелия). Ученые считают, что газовые планеты-гиганты образовались раньше, чем планеты земной группы. Когда большая часть тугоплавких веществ (окислы, силикаты, металлы) выпали из газовой фазы, из них и образовались внутренние планеты (от Меркурия до Марса).
Период вращения газовых планет вокруг своей оси всего 9–17 часов.

На картинке изображены газовые планеты-гиганты в сравнении с Солнцем.

Предположительно, газовые гиганты имеют небольшое каменное или металлическое ядро, а давление в их атмосфере настолько высоко, что водород переходит в жидкое состояние. А если планета особенно велика, то ниже этого слоя жидкого водорода может находиться еще слой металлического водорода (как жидкий металл). Учеными установлено также, что все газовые планеты излучают больше тепла, чем получают от Солнца. Это можно объяснить тем, что или планеты постепенно сжимаются, или в них идут термоядерные реакции. Термоядерная реа́кция - разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.
В атмосферах газовых планет дуют мощные ветры со скоростями до тысяч километров в час, атмосферные образования там формируют гигантские вихри. Например, Большое Красное пятно размером в несколько раз больше Земли на Юпитере наблюдают уже более 300 лет. Имеется Большое Тёмное пятно на Нептуне, более мелкие пятна на Сатурне.
Газовыми могут являться лишь крупные планеты, так как небольшие небесные тела не способны удержать такой лёгкий газ, как водород.
Все, что мы здесь сказали о газовых планетах-гигантах, относится к группе внешних планет Солнечной системы. Но газовые планеты-гиганты существуют и за пределами Солнечной системы. Самой большой известной газовой планетой является TrES-4b.

Планета TrES-4b

Это газовый гигант, одна из самых больших известных планет, которая на 70 % больше Юпитера. На картинке Юпитер и TrES-4b показаны в сравнении. Эта планета находится в созвездии Геркулеса и обращается вокруг звезды GSC02620-00648. Она удалена от Земли на расстояние в 1435 световых лет. Чтобы было понятно, насколько это огромное расстояние, объясним, что такое световой год. Световой год (св. г., ly) - внесистемная единица длины, равная расстоянию, проходимому светом за один год. А если учесть, что 1 световая секунда ≈ 299 792,5 км, то можно вычислить расстояние до планеты TrES-4b. Интересно, что эта планета открыта астрономами-любителями.

Карликовые планеты

Характеристику данного вида планет дал Международный астрономический союз. Карликовые планеты не следует путать с малыми планетами Солнечной системы, или астероидами.
Итак, по классификации Международного астрономического союза , принятой в 2006 г., карликовые планеты – это небесное тело, которое:
обращается по орбите вокруг Солнца;
имеет достаточную массу для того, чтобы под действием сил гравитации поддерживать гидростатическое равновесие и иметь близкую к округлой форму;
не является спутником планеты;
не доминирует на своей орбите (не может расчистить пространство от других объектов).
Тела, достаточно большие для того, чтобы расчистить окрестности своей орбиты, считаются планетами , а недостаточно большие - малыми телами Солнечной системы, или астероидами . Карликовые планеты занимают промежуточное положение между этими двумя категориями. Не все астрономы согласны с такой классификацией, но пока это так.
Официально признаны пять карликовых планет: Церера, Плутон, Хаумеа, Макемаке, Эрида . Интересно, что из этого списка только Плутон был «понижен в звании», став карликовой планетой и потеряв статус планеты, а остальные, наоборот, «повышены», перестав быть просто одними из астероидов.
Не исключено, что по меньшей мере ещё 40 из известных объектов в Солнечной системе принадлежат к этой категории. По оценкам учёных, может быть обнаружено до 200 карликовых планет в Поясе Койпера и до 2000 карликовых планет за его пределами. Все это в пределах Солнечной системы. Пояс Ко́йпера – это область Солнечной системы от орбиты Нептуна до расстояния около 55 а. е. от Солнца.
Классификация тел с характеристиками карликовых планет в других планетных системах пока не определена.

Церера

Церера - самая близкая к Земле карликовая планета, она удалена от Земли на 263 млн. км. Она была открыта в 1801 г. итальянским астрономом Джузеппе Пьяцци в Палермской астрономической обсерватории. Ее диаметр около 950 км, на сегодняшний день Церера является крупнейшим и наиболее массивным телом в поясе астероидов. Недавние наблюдения показали, что она имеет сферическую форму, в отличие от большинства малых тел, имеющих из-за низкой гравитации неправильную форму. Поверхность Цереры, вероятно, представляет собой смесь водяного льда и различных минералов, таких как карбонаты и глины. Церера, как предполагается, имеет каменное ядро и ледяную мантию и даже, возможно, содержит местами океаны жидкой воды под своей поверхностью. Масса Цереры 9,5 1020 кг, период обращения 4,599 года. Средняя температура поверхности 167К.

Строение Цереры:
1 - тонкий слой реголита;
2 - ледяная мантия;
3 - каменное ядро.

С Земли видимый блеск Цереры колеблется от 6,7 до 9,3 звёздной величины, поэтому ее невозможно различить невооруженным глазом. 27 сентября 2007 г. НАСА запустило зонд Dawn для изучения Весты (2011-2012) и Цереры (2015). Спутников у Цереры пока не обнаружено.

Плутон

Крупнейшая наряду с Эридой по размерам карликовая планета Солнечной системы и десятое по массе (без учёта спутников) небесное тело, обращающееся вокруг Солнца. Первоначально Плутон классифицировался как планета, однако сейчас он считается одним из крупнейших объектов (возможно, самым крупным) в Поясе Койпера. Как и большинство объектов в поясе Койпера, Плутон состоит в основном из горных пород и льда.
Плутон был открыт еще в XIX веке, но имя ему дали только в 1930 г. - эта дата и считается датой его открытия. Он считался девятой планетой Солнечной системы до 2006 г., но затем во внешней части Солнечной системы были открыты объекты, например Эрида, которые были массивнее Плутона, и Международный астрономический союз причислил его к новой категории карликовых планет вместе с Эридой и Церерой.

Орбита Плутона сильно наклонена (17º), среднее расстояние Плутона от Солнца составляет 5,913 млрд. км. Плутон находится с Нептуном в орбитальном резонансе 3:2 - на каждые три оборота Нептуна вокруг Солнца приходится два оборота Плутона, весь цикл занимает 500 лет. Орбитальный резонанс - это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты. Если Плутон изначально не был в резонансе с Нептуном, то он, вероятно, время от времени сближался с ним гораздо сильнее, и эти сближения за миллиарды лет воздействовали на Плутон, изменив его орбиту и превратив её в наблюдаемую ныне. Расчёты позволили установить, что в течение миллионов лет общая природа взаимодействий между Нептуном и Плутоном не меняется.
Среди объектов Солнечной системы Плутон меньше по размерам и массе не только в сравнении с остальными планетами, он уступает даже некоторым их спутникам. Атмосфера Плутона - тонкая оболочка из азота, метана и монооксида углерода, испаряющихся с поверхностного льда. Недавно вычислили, что температура на поверхности Плутона 43 К.
Известны пять естественных спутников Плутона, имена на сегодняшний день имеют три из них: Харон, открытый в 1978 астрономом Джеймсом Кристи, и два маленьких спутника, Никта и Гидра, открытые в 2005 г. Четвёртый спутник был открыт с помощью телескопа «Хаббл»; сообщение об открытии было опубликовано 20 июля 2011 на сайте телескопа. Временно его назвали S/2011 P 1 (P4); его размеры составляют от 13 до 34 км. 11 июля 2012 года было объявлено об открытии пятого спутника Плутона.

Это четвёртая по величине карликовая планета Солнечной системы, находящаяся в Поясе Койпера, ее диаметр более 100 км. Хаумеа обладает сильно вытянутой формой. У неё обнаружено 2 спутника. Хаумеа была открыта независимо американской и испанской группами астрономов в 2004 г. Хаумеа - необычная планета. Она очень быстро вращается - её период оборота вокруг собственной оси составляет 3,9155 ч. Очень быстрое вращение искажает ее форму.
В 2005 году было проведено исследование спектра Хаумеа посредством телескопов в обсерваториях Джемини и Кека. В результате было обнаружено, что её поверхность покрыта преимущественно водяным льдом в виде зёрен диаметром 25 или 50 мкм. У Хаумеа два спутника. Ее масса 4,2 1021 кг, средняя температура поверхности неизвестна.

Макемаке - третья по величине карликовая планета Солнечной системы. Относится к транснептуновым объектам, плутоидам. Является крупнейшим из известных классических объектов пояса Койпера. Макемаке был открыт группой американских астрономов в 2005 г. По состоянию на 2012 год Макемаке находится в 7,8 млрд. км от Солнца. Это достаточно яркий объект, его можно заснять через мощный любительский телескоп. Размер и масса Макемаке точно не известны. Период обращения 248,09 лет. Средняя температура поверхности также не известна.
При исследовании Макемаке космическими телескопами «Спитцер» и «Гершель» было обнаружено, что поверхность Макемаке неоднородна. Хотя бо́льшая часть поверхности покрыта метановым снегом, существуют небольшие участки затемнённого ландшафта. Исследователями было установлено, что его поверхность по химическому составу похожа на поверхность Плутона. На орбите вокруг Макемаке спутников не обнаружено.


Самая массивная из карликовых планет Солнечной системы, находящаяся в Рассеянном диске. Ранее была известна под названием Зена. Эрида долгое время считалась значительно крупнее Плутона, но, по последним данным, их размеры настолько близки, что нельзя с уверенностью утверждать, какой из этих объектов крупнее. Эрида открыта группой американских астрономов в 2005 г. Среднее расстояние Эриды от Солнца 10,18 млрд км, но орбита ее сильно вытянута. Непосредственно наблюдать планету в любительский телескоп невозможно. Точно определить размеры столь удалённого небесного тела очень трудно. Измерения размеров Эриды, проведённые в 2007 году при помощи инфракрасного космического телескопа «Спитцер», позволили оценить её диаметр ~ в 2600+400 км. Вопрос о том, какая из карликовых планет – Плутон или Эрида - в действительности является крупнейшей в Солнечной системе, остаётся открытым. Масса Эриды определена благодаря наличию спутника, она больше массы Плутона и равна 1,67 1022 кг. По данным фотометрического исследования, проведённого в 2006 году, Эрида совершает полный оборот вокруг своей оси не менее чем за 5 земных суток. Спектроскопические наблюдения 2005 года в обсерватории Джемини показали наличие на поверхности Эриды метанового снега, чем она похожа на Плутон и спутник Нептуна Тритон. Эрида отличается от Плутона и Тритона цветом. Плутон и Тритон красноватые, а она - сероватая. Это связано с присутствием на Эриде также этанового и этиленового льда. У Эриды известен 1 спутник. Период обращения 557 лет, средняя температура поверхности 30К.

Включайся в дискуссию
Читайте также
Как приготовить капусту кольраби?
Основные болезни картофеля и причины его повреждения фото
Виды и разновидности грибов сыроежки: фото и описание Сыроежка строение