Подпишись и читай
самые интересные
статьи первым!

Строение и функции головного мозга локализация. Локализация функций в коре больших полушарий. Электрическая активность головного мозга. Топическая диагностика корковых поражений

На основании многочисленных исследований с определенной точностью установлено функциональное значение различных областей коры полушарий большого мозга.

Участки коры полушарий, имеющие характерную цитоархитектонику, и нервные связи, участвующие в выполнении определенных функций, являются нервными центрами. Поражение таких участков коры проявляется в утрате присущих им функций. Нервные центры коры полушарий большого мозга могут быть разделены на проекционные и ассоциативные.

Проекционные центры – это участки коры полушарий большого мозга, представляющие собой корковую часть анализатора, имеющие непосредственную морфофункциональную связь через афферентные или эфферентные проводящие пути с нейронами подкорковых центров. Они осуществляют первичную обработку поступающей сознательной афферентной информации и реализацию осознанной эфферентной информации (произвольные двигательные акты).

Ассоциативные центры – это участки коры полушарий большого мозга, не имеющие непосредственной связи с подкорковыми образованиями, а связанные временной двусторонней связью с проекционными центрами. Ассоциативные центры играют первостепенную роль в осуществлении высшей нервной деятельности (глубокая обработка сознательной афферентной информации, мыслительная деятельность, память и т.д.).

В настоящее время достаточно точно выяснена динамическая локализация некоторых функций коры полушарий большого мозга.

Участки коры полушарий большого мозга, не являющиеся проекционными или ассоциативными центрами, участвуют в выполнении межанализаторной интегративной деятельности головного мозга.

Проекционные нервные центры коры полушарий большого мозга развиваются как у человека, так и у высших позвоночных животных. Они начинают функционировать сразу же после рождения. Формирование этих центров завершается гораздо раньше, чем ассоциативных. В практическом отношении важными являются следующие проекционные центры.

1. Проекционный центр общей чувствительности (тактильной, болевой, температурной и сознательной проприоцептивной) также называют кожным анализатором общей чувствительности. Он локализуется в коре постцентральной извилины (поля 1, 2, 3). В нем заканчиваются волокна, идущие в составе таламо-коркового пути. Каждый участок противоположной половины тела имеет отчетливую проекцию в корковом конце кожного анализатора (соматотопическая проекция). В верхнем отделе постцентральной извилины проецируются нижняя конечность и туловище, в среднем – верхняя конечность и в нижнем – голова (сенсорный гомункулюс Пенфилда). Размеры проекционных зон соматосенсорной коры прямо пропорциональны количеству рецепторов, находящихся в кожных покровах. Этим объясняется наличие наиболее крупных соматосенсорных зон, соответствующих лицу и кисти (рис. 3.25). Поражение постцентральной извилины вызывает утрату тактильной, болевой, температурной чувствительности и мышечно-суставного чувства на противоположной половине тела.

Рис. 3.25.

  • 1 – половые органы; 2 – стопа; 3 – бедро; 4 – туловище; 5 – кисть; 6 – указательный и большой пальцы кисти; 7 – лицо; 8 – зубы; 9 – язык; 10 – глотка и внутренние органы
  • 2. Проекционный центр двигательных функций (кинестетический центр), или двигательный анализатор, располагается в двигательной области коры, включающей пред- центральиую извилину и околоцентральную дольку (поля 4, 6). В 3–4-м слоях коры двигательного анализатора заканчиваются волокна, идущие в составе таламо-коркового пути.

Здесь осуществляется анализ проприоцептивных (кинестетических) раздражений. В пятом слое коры располагается ядро двигательного анализатора, от нейроцитов которого берут начало корково-спинномозговой и корково-ядерный пути. В предцентральной извилине также имеется четкая соматотопическая локализация двигательных функций. Мышцы, выполняющие сложные и тонко дифференцированные движения, имеют большую проекционную зону в коре предцентральной извилины. Наибольшую площадь занимает проекция мышц языка, лица и кисти, наименьшую – проекция мышц туловища и нижних конечностей. Соматотопическая проекция на предцентральную извилину носит название "моторный гомункулюс Пенфилда". Тело человека проецируется на извилине "вверх ногами", причем проекция осуществляется на кору противоположного полушария (рис. 3.26).

Афферентные волокна, заканчивающиеся в чувствительных слоях коры кинестетического центра, первоначально проходят в составе путей Голля, Бурдаха и ядерно-таламического тракта, проводящих импульсы сознательной проприоцептивной чувствительности. Поражение предцентральной извилины приводит к нарушению восприятия раздражений от скелетных мышц, связок, суставов и надкостницы. Корково-спинномозговой и корково-ядерный пути проводят импульсы, обеспечивающие сознательные движения, и оказывают тормозное воздействие на сегментарный аппарат ствола головного и спинного мозга. Корковый центр двигательного анализатора через систему ассоциативных волокон имеет многочисленные связи с различными корковыми сенсорными центрами (центром общей чувствительности, центром зрения, слуха, вестибулярных функций и т.д.). Указанные связи необходимы для выполнения интегративных функций при выполнении произвольных движений.

3. Проекционный центр схемы тела располагается в области внутритеменной борозды (поле 40s). В нем представлены соматотопические проекции всех частей тела. В центр схемы тела поступают импульсы преимущественно сознательной проприоцептивной чувствительности. Основное функциональное назначение данного проекционного центра – определение положения тела и отдельных его частей в пространстве и оценка тонуса мускулатуры. При поражении верхней теменной дольки наблюдается нарушение таких функций, как узнавание частей собственного тела, ощущение лишних конечностей, нарушения определения положения отдельных частей тела в пространстве.

Рис. 3.26.

  • 1 – стопа; 2 – голень; 3 – колено; 4 – бедро; 5 – туловище; 6 – кисть; 7 – большой палец кисти; 8 – шея; 9 – лицо; 10 – губы; 11 – язык; 12 – гортань
  • 4. Проекционный центр слуха, или ядро слухового анализатора, располагается в средней трети верхней височной извилины (поле 22). В этом центре заканчиваются волокна слухового пути, происходящие от нейронов медиального коленчатого тела (подкорковый центр слуха) своей и, преимущественно, противоположной сторон. В конечном счете волокна слухового пути проходят в составе слуховой лучистости.

При поражении проекционного центра слуха с одной стороны отмечается понижение слуха на оба уха, причем с противоположной стороны от очага поражения слух снижается в большей степени. Полная глухота наблюдается только при двустороннем поражении проекционных центров слуха.

5. Проекционный центр зрения, или ядро зрительного анализатора, локализуется на медиальной поверхности затылочной доли, по краям шпорной борозды (поле 17). В нем заканчиваются волокна зрительного пути со своей и противоположной сторон, происходящие от нейронов латерального коленчатого тела (подкорковый центр зрения). На шпорную борозду имеется определенная соматотопическая проекция различных участков сетчатки.

Одностороннее поражение проекционного центра зрения сопровождается частичной слепотой на оба глаза, но в различных участках сетчатки. Полная слепота наступает только при двустороннем поражении.

  • 6. Проекционный центр обоняния, или ядро обонятельного анализатора, располагается на медиальной поверхности височной доли в коре парагиппокампальной извилины и в крючке. Здесь заканчиваются волокна обонятельного пути со своей и противоположной сторон, происходящие от нейронов обонятельного треугольника. При одностороннем поражении проекционного центра обоняния отмечаются снижение обоняния и обонятельные галлюцинации.
  • 7. Проекционный центр вкуса, или ядро вкусового анализатора, располагается там же, где и проекционный центр обоняния, т.е. в лимбической области мозга (крючок и парагиппокампальная извилина). В проекционном центре вкуса заканчиваются волокна вкусового пути своей и противоположной сторон, происходящие от нейронов базальных ядер таламуса. При поражении лимбической области наблюдаются расстройства вкуса, обоняния, нередко появляются соответствующие галлюцинации.
  • 8. Проекционный центр чувствительности от внутренних органов, или анализатор висцероцепции, располагается в нижней трети постцентральной и предцентральной извилин (поле 43). В корковую часть анализатора висцероцепции поступают афферентные импульсы от гладкой мускулатуры и слизистых оболочек внутренних органов. В коре данной области заканчиваются волокна интероцептивного пути, происходящие от нейронов вентролатеральных ядер таламуса, в которые информация поступает по ядерно-таламическому тракту. В проекционном центре висцероцепции анализируются главным образом болевые ощущения от внутренних органов и афферентные импульсы от гладкой мускулатуры.
  • 9. Проекционный центр вестибулярных функций, несомненно, имеет свое представительство в коре полушарий большого мозга, однако сведения о его локализации неоднозначны. Принято считать, что проекционный центр вестибулярных функций располагается в области средней и нижней височных извилин (поля 20, 21). Определенное отношение к вестибулярному анализатору имеют также прилежащие отделы теменной и лобной долей. В коре проекционного центра вестибулярных функций заканчиваются волокна, происходящие от нейронов срединных ядер таламуса. Поражения указанных корковых центров проявляются спонтанным головокружением, ощущением неустойчивости, чувством проваливания, ощущением движения окружающих предметов и деформации их контуров.

Завершая рассмотрение проекционных центров, следует отметить, что корковые анализаторы общей чувствительности получают афферентную информацию с противоположной стороны тела, поэтому поражение центров сопровождается расстройствами определенных видов чувствительности только на противоположной стороне тела. Корковые анализаторы специальных видов чувствительности (слуховой, зрительной, обонятельной, вкусовой, вестибулярной) связаны с рецепторами соответствующих органов своей и противоположной сторон, поэтому полное выпадение функций данных анализаторов наблюдается только при поражении соответствующих зон коры полушарий большого мозга с обеих сторон.

Ассоциативные нервные центры. Эти центры формируются позже, чем проекционные, причем сроки кортикализации, т.е. созревания коры головного мозга, в данных центрах неодинаковы. Ассоциативные центры отвечают за мыслительные процессы, память и реализацию словесной функции.

  • 1. Ассоциативный центр "стереогнозии ", или ядро кожного анализатора (центр узнавания предметов на ощупь). Этот центр располагается в верхней теменной дольке (поле 7). Он двусторонний: в правом полушарии – для левой кисти, в левом – для правой. Центр "стереогнозии" связан с проекционным центром общей чувствительности (постцентральная извилина), из которого нервные волокна проводят импульсы болевой, температурной, тактильной и проприоцептивной чувствительности. Поступающие импульсы в ассоциативном корковом центре анализируются и синтезируются, в результате чего происходит узнавание ранее встречавшихся предметов. На протяжении всей жизни центр "стереогнозии" постоянно развивается и совершенствуется. При поражении верхней теменной дольки больные теряют способность с закрытыми глазами создавать общее целостное представление о предмете, т.е. не могут узнать этот предмет на ощупь. Отдельные свойства предметов, такие как форма, объем, температура, плотность, масса, определяются правильно.
  • 2. Ассоциативный центр "праксии", или анализатор целенаправленных привычных движений. Данный центр располагается в нижней теменной дольке в коре надкраевой извилины (поле 40), у правшей – в левом полушарии большого мозга, у левшей – в правом. У некоторых людей центр "праксии" формируется в обоих полушариях, такие люди в одинаковой мере владеют правой и левой руками и называются амбидекстрами.

Центр "праксии" развивается в результате многократного повторения сложных целенаправленных действий. В результате закрепления временных связей формируются привычные навыки, например работа на пишущей машинке, игра на рояле, выполнение хирургических манипуляций и т.д. По мере накопления жизненного опыта центр праксии постоянно совершенствуется. Кора в области надкраевой извилины имеет связи с задней и передней центральными извилинами.

После осуществления синтетической и аналитической деятельности из центра "праксии" информация поступает в прецентральную извилину к пирамидным нейронам, откуда по корково-спинномозговому пути достигает двигательных ядер передних рогов спинного мозга.

3. Ассоциативный центр зрения, или анализатор зрительной памяти, располагается на верхнелатеральной поверхности затылочной доли (поля 18–19), у правшей – в левом полушарии, у левшей – в правом. В нем обеспечивается запоминание предметов по их форме, внешнему виду, цвету. Считают, что нейроны поля 18 обеспечивают зрительную память, а нейроны поля 19 – ориентацию в непривычной обстановке. Поля 18 и 19 имеют многочисленные ассоциативные связи с другими корковыми центрами, благодаря чему происходит интегративное зрительное восприятие.

При поражении центра зрительной памяти развивается зрительная агнозия. Чаще наблюдается частичная агнозия (нс узнает знакомых, свой дом, себя в зеркале). При поражении поля 19 отмечается искаженное восприятие предметов, больной не узнает знакомых предметов, но он их видит, обходит препятствия.

Нервной системе человека присущи специфические центры. Это центры второй сигнальной системы, обеспечивающие способность общения между людьми посредством членораздельной человеческой речи. Человеческая речь может воспроизводиться в виде исполнения членораздельных звуков ("артикуляция") и изображения письменных знаков ("графика"). Соответственно в коре головного мозга формируются ассоциативные речевые центры – акустический и оптический центры речи, центр артикуляции и графический центр речи. Названные ассоциативные речевые центры закладываются вблизи соответствующих проекционных центров. Они развиваются в определенной последовательности, начиная с первых месяцев после рождения, и могут совершенствоваться до глубокой старости. Рассмотрим ассоциативные речевые центры в порядке их формирования в головном мозге.

4. Ассоциативный центр слуха, или акустический центр речи (центр Вернике), расположен в коре задней трети верхней височной извилины. Здесь заканчиваются нервные волокна, происходящие от нейронов проекционного центра слуха (средняя треть верхней височной извилины). Ассоциативный центр слуха начинает формироваться на втором-третьем месяце после рождения. По мере формирования центра ребенок начинает различать среди окружающих звуков членораздельную речь, вначале отдельные слова, а затем словосочетания и сложные предложения.

При поражении центра Вернике у больных развивается сенсорная афазия. Она проявляется в виде утраты способности понимать свою и чужую речь, хотя больной хорошо слышит, реагирует на звуки, по ему кажется, что окружающие разговаривают на незнакомом ему языке. Отсутствие слухового контроля за собственной речью приводит к нарушению построения предложений, речь становится непонятной, насыщенной бессмысленными словами и звуками. При поражении центра Вернике, поскольку он имеет прямое отношение к речеобразованию, страдает не только понимание слов, но и их произношение.

5. Ассоциативный двигательный центр речи (речедвигательный), или центр артикуляции речи (центр Брока), расположен в коре задней трети нижней лобной извилины (поле 44) в непосредственной близости от проекционного центра двигательных функций (предцентральная извилина). Речедвигательный центр начинает формироваться на третьем месяце после рождения. Он односторонний – у правшей он развивается в левом полушарии, у левшей – в правом. Информация из речедвигательного центра поступает в предцентральную извилину и далее по корково-ядерному пути – к мышцам языка, гортани, глотки, мышцам головы и шеи.

При поражении речедвигательного центра возникает моторная афазия (утрата речи). При частичном поражении речь может быть замедлена, затруднена, скандирована, бессвязна, нередко характеризуется лишь отдельными звуками. Речь окружающих больные понимают.

6. Ассоциативный оптический центр речи, или зрительный анализатор письменной речи (центр лексии, или центр Дежерина), находится в угловой извилине (поле 39). К нейронам оптического центра речи поступают зрительные импульсы от нейронов проекционного центра зрения (поля 17). В центре "лексии" происходит анализ зрительной информации о буквах, цифрах, знаках, буквенном составе слов и понимании их смысла. Центр формируется с трехлетнего возраста, когда ребенок начинает узнавать буквы, цифры и оценивать их звуковое значение.

При поражении центра "лексии" наступает алексия (расстройство чтения). Больной видит буквы, но не понимает их смысла и, следовательно, не может прочесть текст.

7. Ассоциативный центр письменных знаков, или двигательный анализатор письменных знаков (центр графин), располагается в заднем отделе средней лобной извилины (поле 8) рядом с предцентральной извилиной. Центр "графин" начинает формироваться на пятом-шестом году жизни. В этот центр поступает информация из центра "праксии", предназначенная для обеспечения тонких, точных движений руки, необходимых для написания букв, цифр, для рисования. От нейронов центра "графин" аксоны направляются в среднюю часть предцентральной извилины. После переключения информация по корково-спинномозговому пути направляется к мышцам верхней конечности. При поражении центра "графин" теряется способность написания отдельных букв, возникает "аграфия".

Таким образом, речевые центры имеют одностороннюю локализацию в коре полушарий большого мозга. У правшей они располагаются в левом полушарии, у левшей – в правом. Следует отметить, что ассоциативные речевые центры развиваются на протяжении всей жизни.

8. Ассоциативный центр сочетанного поворота головы и глаз (кортикальный центр взора) располагается в средней лобной извилине (поле 9) кпереди от двигательного анализатора письменных знаков (центр графин). Он осуществляет регуляцию сочетанного поворота головы и глаз в противоположную сторону за счет импульсов, поступающих в проекционный центр двигательных функций (предцентральная извилина) от проприоцепторов мышц глазных яблок. Кроме того, в этот центр поступают импульсы от проекционного центра зрения (кора в области шпорной борозды – поле 17), происходящие от нейронов сетчатки глаза.

Кора полушарий большого мозга образована серым веществом, которое лежит по периферии (на поверхности) полушарий. Толщина коры различных участков полушарий колеблется от 1,3 до 5 мм. Количество нейронов в шестислойной коре у человека достигает 10 -- 14 млрд. Каждый из них связан с помощью синапсов с тысячами других нейронов. Располагаются они правильно ориентированными «колонками».

Различные рецепторы воспринимают энергию раздражения и передают ее в виде нервного импульса в кору головного мозга, где происходит анализ всех раздражений, которые поступают из внешней и внутренней среды. В коре головного мозга располагаются центры (корковые концы анализаторов, которые не имеют строго очерченных границ), регулирующие выполнение определенных функций (рис.1).

Рис.1. Корковые центры анализаторов

1 -- ядро двигательного анализатора; 2 -- лобная доля; 3 -- ядро вкусового анализатора; 4 - двигательный центр речи (Брока); 5 - ядро слухового анализатора; 6 - височный центр речи (Вернике); 7 - височная доля; 8 -- затылочная доля; 9 -- ядро зрительного анализатора; 10 -- теменная доля; 11 - ядро чувствительного анализатора; 12 - срединная щель.

В коре постцентральной извилины и верхней теменной дольки залегают ядра коркового анализатора чувствительности (температурной, болевой, осязательной, мышечного и сухожильного чувства) противоположной половины тела. Причем вверху расположены проекции нижних конечностей и нижних отделов туловища, а внизу проецируются рецепторные поля верхних частей тела и головы. Пропорции тела весьма искажены (рис.2), ибо на представительство в коре кистей, языка, лица и губ приходится значительно большая площадь, чем на туловище и ноги, что соответствует их физиологической значимости.

Рис. 2. Чувствительный гомункулус

1 -- fades superolateralis hemispherii (gyrus post-centralis); 2 -- lobus temporalis; 3 -- sul. lateralis; 4 -- ventriculus lateralis; 5 -- fissura longitudinalis cerebri.

Показаны проекции частей тела человека на область коркового конца анализатора общей чувствительности, локализующегося в коре постцентральной извилины большого мозга; фронтальный разрез полушария (схема).

Рис.3. Двигательный гомункулус

1 -- facies superolateralis hemispherii (gyrus precent-ralis); 2 -- lobus temporalis; 3 -- sulcus lateralis; 4 -- ventriculus lateralis; 5 -- fissura longitudinalis cerebri.

Показаны проекции частей тела человека на область коркового конца двигательного анализатора, локализующегося в коре предцентральнои извилины большого мозга; фронтальный разрез полушария (схема).

Ядро двигательного анализатора находится главным образом в пред центральной извилине («двигательная область коры»), и здесь пропорции частей тела человека, как и в чувствительной зоне, весьма искажены (рис.3). Размеры проекционных зон различных частей тела зависят не от их действительной величины, а от функционального значения. Так, зоны кисти в коре полушарий большого мозга значительно больше, чем зоны туловища и нижней конечности, вместе взятые. Двигательные области каждого из полушарий, весьма специализированные у человека, связаны со скелетными мышцами противоположной стороны тела. Если мышцы конечностей изолированно связаны с одним из полушарий, то мышцы туловища, гортани и глотки - с двигательными областями обоих полушарий. От двигательной коры нервные импульсы направляются к нейронам спинного мозга, а от них - к скелетным мышцам.

В коре височной доли находится ядро слухового анализатора. К каждому из полушарий подходят проводящие пути от рецепторов органа слуха как левой, так и правой стороны.

Ядро зрительного анализатора располагается на медиальной поверхности затылочной доли. Причем ядро правого полушария связано проводящими путями с латеральной (височной) половиной сетчатки правого глаза и медиальной (носовой) половиной сетчатки левого глаза; левого - с латеральной половиной сетчатки левого и медиальной половиной сетчатки правого глаза.

Благодаря близкому расположению ядер обонятельного (лимбическая система, крючок) и вкусового анализаторов (самые нижние отделы коры постцентральной извилины) чувства обоняния и вкуса тесно связаны между собой. Ядра вкусового и обонятельного анализаторов обоих полушарий связаны проводящими путями с рецепторами как левой, так и правой стороны.

Описанные корковые концы анализаторов осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляющих первую сигнальную систему действительности (И. П. Павлов). В отличие от первой, вторая сигнальная система имеется только у человека и тесно связана с членораздельной речью.

На долю корковых центров приходится лишь небольшая площадь коры больших полушарий, преобладают участки, непосредственно не выполняющие чувствительные и двигательные функции. Эти области называются ассоциативными. Они обеспечивают связи между различными центрами, участвуют в восприятии и обработке сигналов, объединении получаемой информации с эмоциями и информацией, заложенной в памяти. Современные исследования позволяют считать, что в ассоциативной коре расположены чувствительные центры высшего порядка (V. Mountcastle, 1974).

Речь и мышление человека осуществляются при участии всей коры полушарий большого мозга. В то же время в коре полушарий большого мозга человека имеются зоны, являющиеся центрами целого ряда специальных функций, связанных с речью. Двигательные анализаторы устной и письменной речи располагаются в областях коры лобной доли вблизи ядра двигательного анализатора. Центры зрительного и слухового восприятия речи находятся вблизи ядер анализаторов зрения и слуха. При этом речевые анализаторы у «правшей» локализируются лишь в левом полушарии, а у «левшей» -- в большинстве случаев тоже слева. Однако они могут располагаться справа или в обоих полушариях (W. Penfield, L. Roberts, 1959; S. Dimond, D. Bleizard, 1977). По-видимому, лобные доли являются морфологической основой психических функций человека и его разума. При бодрствовании наблюдается более высокая активность нейронов лобных долей. Определенные области лобных долей (так называемая префронтальная кора) связаны многочисленными связями с различными отделами лимбической нервной системы, что позволяет считать их корковыми отделами лимбической системы. Префронтальная кора играет наиболее важную роль в эмоциях.

В 1982 г. Р. Сперри был удостоен Нобелевской премии «за открытия, касающиеся функциональной специализации полушарий мозга». Исследования Сперри показали, что кора левого полушария отвечает за вербальные (лат. verbalis - словесный) операции и речь. Левое полушарие ответственно за понимание речи, а также за выполнение движений и жестов, связанных с языком; за математические расчеты, абстрактное мышление, интерпретацию символических понятий. Кора правого полушария контролирует выполнение невербальных функций, она управляет интерпретацией зрительных образов, пространственных взаимоотношений. Кора правого полушария дает возможность распознавать предметы, но не позволяет выразить это словами. Кроме того, правое полушарие распознает звуковые образы и воспринимает музыку. Оба полушария ответственны за сознание и самосознание человека, его социальные функции. Р. Сперри пишет: «Каждое полушарие... имеет как бы отдельное собственное мышление». При анатомическом изучении мозга были выявлены межполушарные различия. В то же время следует подчеркнуть, что оба полушария здорового мозга работают вместе, образуя единый мозг.

В коре большого мозга происходит анализ всех раздражений, которые поступают из окружающей внешней и внутренней среды. Наибольшее число афферентных импульсов поступает к клеткам 3-го и 4-го слоев коры большого мозга. В коре большого мозга располагаются центры, регулирующие выполнение определенных функций. И. П. Павлов рассматривал кору большого мозга как совокупность корковых концов анализаторов. Под термином «анализатор» понимается сложный комплекс анатомических структур, который состоит из периферического рецепторного (воспринимающего) аппарата, проводников нервных импульсов и центра. В процессе эволюции происходит локализация функций в коре большого мозга. Корковый конец анализаторов – это не какая-либо строго очерченная зона. В коре большого мозга различают «ядро» сенсорной системы и «рассеянные элементы». Ядро – это участок расположения наибольшего количества нейронов коры, в которых точно проецируются все структуры периферического рецептора. Рассеянные элементы расположены вблизи ядра и на различном расстоянии от него. Если в ядре осуществляется высший анализ и синтез, то в рассеянных элементах – более простой. При этом зоны «рассеянных элементов» различных анализаторов не имеют четких границ и наслаиваются друг на друга.

Функциональная характеристика корковых зон лобной доли. В области предцентральной извилины лобной доли находится корковое ядро двигательного анализатора. Эту область еще называют сенсомоторной корой. Сюда приходит часть афферентных волокон от таламуса, несущих проприоцептивную информацию от мышц и суставов тела (рис. 8.7). Здесь также начинаются нисходящие пути к стволу мозга и спинному мозгу, обеспечивающие возможность сознательной регуляции движений (пирамидные пути). Поражение этой области коры приводит к параличу противоположной половины тела.

Рис. 8.7. Соматотопическое распределение в предцентральной извилине

В задней трети средней лобной извилины лежит центр письма. Эта зона коры дает проекции к ядрам глазодвигательных черепных нервов, а также с помощью корково-корковых связей сообщается с центром зрения в затылочной доле и центром управления мышцами рук и шеи в предцентральной извилине. Поражение этого центра приводит к нарушениям навыков письма под контролем зрения (аграфия).

В зоне нижней лобной извилины располагается речедвигательный центр (центр Брока). Он обладает ярко выраженной функциональной асимметрией. При его разрушении в правом полушарии теряется способность регулировать тембр и интонации, речь становится монотонной. При разрушении речедвигательного центра слева необратимо нарушается речевая артикуляция вплоть до потери способности к членораздельной речи (афазия) и пению (амузия). При частичных нарушениях может наблюдаться аграмматизм – неспособность правильно строить фразы.

В области передней и средней трети верхней, средней и частично нижней лобных извилин находится обширная передняя ассоциативная зона коры, осуществляющая программирование сложных форм поведения (планирование разных форм деятельности, принятие решений, анализ полученных результатов, волевое подкрепление деятельности, коррекция мотивационной иерархии).

Область лобного полюса и медиальной лобной извилины приурочена к регуляции активности эмоциогенных областей мозга, входящих в лимбическую систему, и имеет отношение к контролю над психо-эмоциональными состояниями. Нарушения в этой области мозга могут привести к изменениям того, что принято называть «структурой личности» и отразиться на характере человека, его ценностных ориентациях, интеллектуальной деятельности.

Орбитальная область содержит центры обонятельного анализатора и тесно связана в анатомическом и функциональном плане с лимбической системой мозга.

Функциональная характеристика корковых зон теменной доли. В постцентральной извилине и верхней теменной дольке располагается корковый центр анализатора общей чувствительности (болевой, температурной и тактильной), или соматосенсорная кора. Представительство различных участков тела в ней, как и в предцентральной извилине, построено по соматотопическому принципу. Этот принцип предполагает, что части тела проецируются на поверхность борозды в тех топографических отношениях, которые они имеют в теле человека. Однако представительство разных частей тела в коре мозга существенно различается. Наибольшее представительство имеют те области (кисть руки, голова, особенно язык и губы), которые связаны со сложными движениями типа письма, речи и т. п. Нарушения коры в этой области приводят к частичной или полной анестезии (потере чувствительности).

Поражения коры в области верхней теменной дольки приводят к снижению болевой чувствительности и нарушению стереогноза – узнавания предметов на ощупь без помощи зрения.

В нижней теменной дольке в области надкраевой извилины располагается центр праксии, регулирующий способность осуществлять сложнокоординированные, составляющие основу трудовых процессов действия, которые требуют специального обучения. Отсюда также берет начало значительное число нисходящих волокон, следующих в составе путей, управляющих сознательными движениями (пирамидные пути). Эта область теменной коры с помощью корково-корковых связей тесно взаимодействует с корой лобной доли и со всеми сенсорными зонами задней половины мозга.

В угловой извилине теменной доли располагается зрительный (оптический) центр речи. Его повреждение приводит к невозможности понимать читаемый текст (алексия).

Функциональная характеристика корковых зон затылочной доли. В области шпорной борозды находится корковый центр зрительного анализатора. Его повреждение приводит к слепоте. При нарушениях в соседних со шпорной бороздой участках коры в области затылочного полюса на медиальной и латеральной поверхностях доли может наступить потеря зрительной памяти, способности ориентироваться в незнакомой обстановке, нарушаются функции, связанные с бинокулярным зрением (способность с помощью зрения оценивать форму предметов, расстояние до них, правильно соразмерять в пространстве движения под контролем зрения и т. д.).

Функциональная характеристика корковых зон височной доли. В области верхней височной извилины в глубине боковой борозды, находится корковый центр слухового анализатора. Его повреждение приводит к глухоте.

В задней трети верхней височной извилины лежит слуховой центр речи (центр Вернике). Травмы в этой области приводят к неспособности понимать устную речь: она воспринимается как шум (сенсорная афазия).

В области средней и нижней височных извилин находится корковое представительство вестибулярного анализатора. Повреждения этой области приводят к нарушениям равновесия при стоянии и снижению чувствительности вестибулярного аппарата.

Функциональная характеристика корковых зон островковой доли.

Сведения, касающиеся функций островковой доли, противоречивы и недостаточны. Есть данные, что кора передней части островка имеет отношение к анализу обонятельных и вкусовых ощущений, а задней части – к обработке соматосенсорной информации и слуховому восприятию речи.

Функциональная характеристика лимбической системы . Лимбическая система – совокупность ряда структур головного мозга, включает поясную извилину, перешеек, зубчатую и парагиппокампальную извилины и др. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна, бодрствования и др.

Поясная и парагиппокампальная извилины имеют непосредственное отношение к лимбической системе мозга (рис. 8.8 и 8.9). Ею контролируется комплекс вегетативных и поведенческих психоэмоциональных реакций на внешнесредовые воздействия. В парагиппокампальной извилине и крючке располагается корковое представительство вкусового и обонятельного анализаторов. Вместе с тем, гиппокамп играет важную роль в обучении: с ним связаны механизмы кратковременной и долговременной памяти.

Рис. 8.8. Медиальная поверхность головного мозга

Базальные (подкорковые центральные) ядра – скопления серого вещества, образующего отдельно лежащие ядра, которые залегают ближе к основанию мозга. К ним относятся полосатое тело, составляющее у низших позвоночных преобладающую массу полушарий; ограда и миндалевидное тело (рис. 8.10).

Рис. 8.9. Лимбическая система

Рис. 8.10. Базальные ганглии

Полосатое тело состоит из хвостатого и чечевицеобразного ядер. Серое вещество хвостатого и чечевицеобразного ядер чередуется с прослойками белого вещества, что и обусловило общее название этой группы подкорковых ядер – полосатое тело.

Хвостатое ядро располагается латеральнее и выше таламуса будучи отделенным от него терминальной полоской. Хвостатое ядро имеет головку, тело и хвост. Чечевицеобразное ядро расположено латеральнее хвостатого. Прослойка белого вещества – внутренняя капсула, отделяет чечевицеобразное ядро от хвостатого и от таламуса. В чечевицеобразном ядре различают бледный шар (медиально) и скорлупу (латерально). Наружная капсула (узкая полоска белого вещества) отделяет скорлупу от ограды.

Хвостатое ядро, скорлупа и бледный шар управляют сложнокоординированными автоматизированными движениями организма, контролируют и поддерживают тонус скелетных мышц, а также являются высшим центром регуляции таких вегетативных функций, как теплопродукция и углеводный обмен в мускулатуре тела. При повреждениях скорлупы и бледного шара могут наблюдаться медленные стереотипные движения (атетоз).

Ядра полосатого тела относятся к экстрапирамидной системе, участвующей в управлении движениями, регуляции мышечного тонуса.

Ограда – это вертикальная пластинка серого вещества, нижняя часть которой продолжается в вещество передней продырявленной пластинки на основании мозга. Ограда расположена в белом веществе полушария латеральнее чечевицеобразного ядра и имеет многочисленные связи с корой больших полушарий.

Миндалевидное тело залегает в белом веществе височной доли полушария, на 1,5–2 см кзади от ее височного полюса, посредством ядер имеет связи с корой большого мозга, со структурами обонятельной системы, с гипоталамусом и ядрами ствола мозга, контролирующими вегетативные функции организма. Его разрушение приводит к агрессивному поведению или апатичному, вялому состоянию. Благодаря своим связям с гипоталамусом миндалевидное тело влияет на эндокринную систему, а также на репродуктивное поведение.

К белому веществу полушария относятся внутренняя капсула и волокна, проходящие через спайки мозга (мозолистое тело, передняя спайка, спайка свода) и направляющиеся к коре и базальным ядрам, свод, а также системы волокон, соединяющих участки коры и подкорковые центры в пределах одной половины мозга (полушария).

I и II боковые желудочки. Полостями полушарий большого мозга являются боковые желудочки (I и II), расположенные в толще белого вещества под мозолистым телом. Каждый желудочек состоит из четырех частей: передний рог залегает в лобной, центральная часть – в теменной, задний рог – в затылочной и нижний рог – в височной доле (рис. 8.11).

Передние рога обоих желудочков отделены друг от друга двумя пластинками прозрачной перегородки. Центральная часть бокового желудочка изгибается сверху вокруг таламуса, образует дугу и переходит кзади – в задний рог, книзу в нижний рог. В центральную часть и нижний рог бокового желудочка вдается сосудистое сплетение, которое через межжелудочковое отверстие соединяется с сосудистым сплетением третьего желудочка.

Рис. 8.11. Желудочки мозга:

1 – левое полушарие головного мозга, 2 – боковые желудочки, 3 – третий желудочек, 4 – водопровод среднего мозга, 5 – четвертый желудочек, 6 – мозжечок, 7 – вход в центральный канал спинного мозга, 8 – спинной мозг

Система желудочков включает парные С-образные полости – боковые желудочки с их передними, нижними и задними рогами, простирающимися соответственно в лобные доли, в височные доли и в затылочные доли полушарий головного мозга. Около 70 % всей цереброспинальной жидкости секретируется сосудистым сплетением стенок боковых желудочков.

Из боковых желудочков жидкость проходит через межжелудочковые отверстия в щелевидную полость третьего желудочка, расположенного в сагиттальной плоскости мозга и разделяющего на две симметричные половины таламус и гипоталамус. Полость третьего желудочка соединяется узким каналом – водопроводом среднего мозга (сильвиевым водопроводом) с полостью четвертого желудочка. Четвертый желудочек несколькими каналами (апертурами) сообщается с подпаутинными пространствами головного и спинного мозга.

Промежуточный мозг

Промежуточный мозг расположен под мозолистым телом, состоит из таламуса, эпиталамуса, метаталамуса и гипоталамуса (рис. 8.12, см. рис. 7.2).

Таламус (зрительный бугор) – парный, яйцевидной формы, образован главным образом серым веществом. Таламус является подкорковым центром всех видов чувствительности. Медиальная поверхность правого и левого таламусов, обращенные друг к другу, образуют боковые стенки полости промежуточного мозга – III желудочка, они соединены между собой межталамическим сращением. Таламус содержит серое вещество, состоящее из скоплений нейронов, которые образуют ядра таламуса. Ядра разделены тонкими прослойками белого вещества. Исследовано около 40 ядер таламуса. Основными ядрами являются передние, медиальные, задние.

Рис. 8.12. Отделы мозга

Эпиталамус включает шишковидное тело, поводки и треугольники поводков. Шишковидное тело, или эпифиз, являющийся железой внутренней секреции, как бы подвешен на двух поводках, соединенных между собой спайкой и связанных с таламусом посредством треугольников поводков. В треугольниках поводках заложены ядра, относящиеся к обонятельному анализатору. У взрослого человека средняя длина эпифиза составляет ~ 0,64 см, а масса ~ 0,1 г. Метаталамус образован парными медиальным и латеральным коленчатыми телами, лежащими позади каждого таламуса. Медиальное коленчатое тело находится позади подушки таламуса, оно является наряду с нижними холмиками пластинки крыши среднего мозга (четверохолмия) подкорковым центром слухового анализатора. Латеральное – расположено книзу от подушки, оно вместе с верхними холмиками пластинки крыши является подкорковым центром зрительного анализатора. Ядра коленчатых тел связаны с корковыми центрами зрительного и слухового анализаторов.

Гипоталамус , представляющий собой вентральную часть промежуточного мозга, располагается кпереди от ножек мозга и включает ряд структур, которые имеют различное происхождение – из конечного мозга образуется расположенная кпереди зрительная часть (зрительный перекрест, зрительный тракт, серый бугор, воронка, нейрогипофиз); из промежуточного – обонятельная часть (сосцевидные тела и собственно подталамическая область – подбугорье) (рис. 8.13).

Рис 8.13. Базальные ядра и промежуточный мозг

Гипоталамус является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему, координирует нервные и гормональные механизмы регуляции функций внутренних органов. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, а второй эффекторную роль.

В гипоталамусе более 30 пар ядер. Крупные нейросекреторные клетки супраоптического и паравентрикулярного ядер передней гипоталамической области вырабатывают нейросекреты пептидной природы.

В медиальном гипоталамусе залегают нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т.д.). Медиальный гипоталамус связан также с латеральным гипоталамусом. Последний не имеет ядер, но обладает двусторонними связями с вышележащими и нижележащими отделами мозга. Медиальный гипоталамус является связующим звеном между нервной и эндокринной системами. В последние годы из гипоталамуса выделены энкефалины и эндорфины (пептиды), обладающие морфиноподобным действием. Считают, что они участвуют в регуляции поведения и вегетативных процессов.

Кпереди от заднего продырявленного вещества лежат два небольщих шаровидной формы сосцевидных тела, образованные серым веществом, покрытым тонким слоем белого. Ядра сосцевидных тел являются подкорковыми центрами обонятельного анализатора. Кпереди от сосцевидных тел расположен серый бугор, который спереди ограничен зрительным перекрестом и зрительным трактом, он представляет собой тонкую пластинку серого вещества на дне III желудочка, которая вытянута книзу и кпереди и образует воронку. Конец ее переходит в гипофиз – железу внутренней секреции, расположенную в гипофизарной ямке турецкого седла. В сером бугре залегают ядра вегетативной нервной системы. Они также оказывают влияние на эмоциональные реакции человека.

Часть промежуточного мозга, расположенная ниже таламуса и отделенная от него гипоталамической бороздой, составляет собственно подбугорье. Сюда продолжаются покрышки ножек мозга, здесь заканчиваются красные ядра и черное вещество среднего мозга.

III желудочек. Полость промежуточного мозга – III желудочек представляет собой узкое, расположенное в сагиттальной плоскости щелевидное пространство, ограниченное с боков медиальными поверхностями таламусов, снизу гипоталамусом, спереди столбами свода, передней спайкой и терминальной пластинкой, сзади эпиталамической (задней) спайкой, сверху – сводом, над которым располагается мозолистое тело. Собственно верхняя стенка образована сосудистой основой III желудочка, в которой залегает его сосудистое сплетение.

Полость III желудочка кзади переходит в водопровод среднего мозга, а спереди по бокам через межжелудочковые отверстия сообщается с боковыми желудочками.

Средний мозг

Средний мозг – самая маленькая часть мозга, лежащая между промежуточным мозгом и мостом (рис.8.14 и 8.15). Область над водопроводом называется крышей среднего мозга, и на ней располагаются четыре выпуклости – пластина четверохолмия с верхними и нижними холмиками. Отсюда выходят пути зрительных и слуховых рефлексов, направляющиеся в спинной мозг.

Ножки мозга – это белые округлые тяжи, выходящие из моста и направляющиеся вперед к полушариям большого мозга. Из борозды на медиальной поверхности каждой ножки выходит глазодвигательный нерв (III пара черепных нервов). Каждая ножка состоит из покрышки и основания, границей между ними является черное вещество. Цвет зависит от обилия меланина в его нервных клетках. Черное вещество относится к экстрапирамидной системе, которая участвует в поддержании мышечного тонуса и автоматически регулирует работу мышц. Основание ножки образовано нервными волокнами, идущими от коры большого мозга в спинной и продолговатый мозг и мост. Покрышка ножек мозга содержит главным образом восходящие волокна, направляющиеся к таламусу, среди которых залегают ядра. Самыми крупными являются красные ядра, от которых начинается двигательный красноядерно-спинномозговой путь. Кроме того, в покрышке располагаются ретикулярная формация и ядро дорсального продольного пучка (промежуточное ядро).

Задний мозг

К заднему мозгу относится мост, расположенный вентрально, и лежащий позади моста мозжечок.

Рис. 8.14. Схематическое изображение продольного среза головного мозга

Рис. 8.15. Поперечный срез через средний мозг на уровне верхних холмиков (плоскость среза показана на рис. 8.14)

Мост выглядит в виде лежащего поперечно утолщенного валика, от латеральной стороны которого справа и слева отходят средние мозжечковые ножки. Задняя поверхность моста, прикрытая мозжечком, участвует в образовании ромбовидной ямки, передняя (прилежащая к основанию черепа) граничит с продолговатым мозгом внизу и ножками мозга вверху (см. рис. 8.15). Она поперечно исчерчена в связи с поперечным направлением волокон, которые идут от собственных ядер моста в средние мозжечковые ножки. На передней поверхности моста по средней линии продольно расположена базилярная борозда, в которой проходит одноименная артерия.

Мост состоит из множества нервных волокон, образующих проводящие пути, среди которых находятся клеточные скопления – ядра. Проводящие пути передней части связывают кору большого мозга со спинным мозгом и с корой полушарий мозжечка. В задней части моста (покрышке) проходят восходящие проводящие пути и частично нисходящие, располагается ретикулярная формация, ядра V, VI, VII, VIII пар черепных нервов. На границе между обеими частями моста лежит трапециевидное тело, образованное ядрами и поперечно идущими волокнами проводящего пути слухового анализатора.

Мозжечок играет основную роль в поддержании равновесия тела и координации движений. Наибольшего развития мозжечок достигает у человека в связи с прямохождением и приспособлением руки к труду. В этой связи у человека сильно развиты полушария (новая часть) мозжечка.

В мозжечке различают два полушария и непарную срединную филогенетически старую часть – червь (рис. 8.16).

Рис. 8.16. Мозжечок: вид сверху и снизу

Поверхности полушарий и червя разделяют поперечные параллельные борозды, между которыми расположены узкие длинные листки мозжечка. В мозжечке различают переднюю, заднюю и клочково-узелковую доли, отделенные более глубокими щелями.

Мозжечок состоит из серого и белого вещества. Белое вещество, проникая между серым, как бы ветвится, образуя на срединном разрезе фигуру ветвящегося дерева – «дерево жизни» мозжечка.

Кора мозжечка состоит из серого вещества толщиной 1–2,5 мм. Кроме того, в толще белого вещества имеются скопления серого – парные ядра: зубчатое ядро, пробковидное, шаровидное и ядро шатра. Афферентные и эфферентные волокна, связывающие мозжечок с другими отделами, образуют три пары мозжечковых ножек: нижние направляются к продолговатому мозгу, средние – к мосту, верхние – к четверохолмию.

К моменту рождения мозжечок менее развит по сравнению с конечным мозгом (особенно полушария), но на первом году жизни он развивается быстрее других отделов мозга. Выраженное увеличение мозжечка отмечается между 5-м и 11-м месяцами жизни, когда ребенок учится сидеть и ходить.

Продолговатый мозг является непосредственным продолжением спинного мозга. Нижней его границей считают место выхода корешков 1-го шейного спинномозгового нерва или перекрест пирамид, верхней – задний край моста, длина его около 25 мм, форма приближается к усеченному конусу, обращенному основанием вверх.

Передняя поверхность разделена передней срединной щелью, по бокам которой располагаются пирамиды, образованные пирамидными проводящими путями, частично перекрещивающимися (перекрест пирамид) в глубине описанной щели на границе со спинным мозгом. Волокна пирамидных путей соединяют кору большого мозга с ядрами черепных нервов и передними рогами спинного мозга. Сбоку от пирамиды с каждой стороны располагается олива, отделенная от пирамиды передней латеральной бороздой.

Задняя поверхность продолговатого мозга разделена задней срединной бороздой, по бокам от нее расположены продолжения задних канатиков спинного мозга, которые кверху расходятся, переходя в нижние мозжечковые ножки.

Продолговатый мозг построен из белого и серого вещества, последнее представлено ядрами IX–XII пар черепных нервов, олив, центрами дыхания и кровообращения, ретикулярной формацией. Белое вещество образовано длинными и короткими волокнами, составляющими соответствующие проводящие пути.

Ретикулярная формация представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных в стволе мозга (продолговатый мозг, мост и средний мозг) и образующих сеть. Ретикулярная формация связана со всеми органами чувств, двигательными и чувствительными областями коры большого мозга, таламусом и гипоталамусом, спинным мозгом. Она регулирует уровень возбудимости и тонуса различных отделов ЦНС, включая кору большого мозга, участвует в регуляции уровня сознания, эмоций, сна и бодрствования, вегетативных функций, целенаправленных движений.

IV желудочек – это полость ромбовидного мозга, книзу он продолжается в центральный канал спинного мозга. Дно IV желудочка благодаря своей форме называется ромбовидной ямкой (рис. 8.17). Она образована задними поверхностями продолговатого мозга и моста, верхними сторонами ямки служат верхние, а нижними – нижние мозжечковые ножки.

Рис. 8.17. Ствол мозга; вид сзади. Мозжечок удален, ромбовидная ямка открыта

Срединная борозда делит дно ямки на две симметричные половины, по обеим сторонам борозды видны медиальные возвышения, расширяющиеся в середине ямки в правый и левый лицевые бугорки, где залегают: ядро VI пары черепных нервов (отводящий нерв), глубже и латеральнее – ядро VII пары (лицевой нерв), а книзу медиальное возвышение переходит в треугольник подъязычного нерва, латеральнее которого находится треугольник блуждающего нерва. В треугольниках, в толще вещества мозга залегают ядра одноименных нервов. Верхний угол ромбовидной ямки сообщается с водопроводом среднего мозга. Боковые отделы ромбовидной ямки получили название вестибулярных полей, где лежат слуховые и вестибулярные ядра преддверно-улиткового нерва (VIII пара черепных нервов). От слуховых ядер отходят к срединной борозде поперечные мозговые полоски, располагающиеся на границе между продолговатым мозгом и мостом и являющиеся волокнами проводящего пути слухового анализатора. В толще ромбовидной ямки залегают ядра V, VI, VII, VIII, IX, X, XI и XII пар черепных нервов.

Кровоснабжение мозга

Кровь в мозг поступает по двум парным артериям: внутренней сонной и позвоночной. В полости черепа обе позвоночные артерии сливаются, вместе образуя основную (базальную) артерию. На основании головного мозга основная артерия сливается с двумя сонными артериями, образуя единое артериальное кольцо (рис.8.18). Такой каскадный механизм кровоснабжения головного мозга гарантирует достаточный кровоток, если какая-нибуь из артерий выйдет из строя.

Рис. 8.19. Артерии на основании головного мозга и вилизиев круг (правое полушарие мозжечка и правая височная доля удалены); Вилизиев круг показан пунктирной линией

От артериального кольца отходят три сосуда: передняя, задняя и средняя мозговые артерии, питающие полушария головного мозга. Эти артерии идут по поверхности головного мозга, а уже от них вглубь мозга кровь доставляется более мелкими артериями.

Систему сонных артерий называют каротидным бассейном, который обеспечивает 2/3 потребностей мозга в артериальной крови и кровоснабжает передние и средние отделы мозга.

Систему артерий «позвоночная – основная» называют вертебробазилярным бассейном, который обеспечивает 1/3 потребностей головного мозга и доставляет кровь в задние отделы.

Отток венозной крови происходит преимущественно через поверхностные и глубокие мозговые вены и венозные синусы (рис. 8.19). В конечном счете кровь направляется во внутреннюю яремную вену, которая выходит из черепа через яремное отверстие, расположенное на основании черепа сбоку от большого затылочного отверстия.

Оболочки мозга

Оболочки головного мозга защищают его от механических повреждений и от проникновения инфекций и токсических веществ (рис. 8.20).

Рис. 8.19. Вены и венозные синусы головного мозга

Рис.8.20. Коронарный срез через череп оболочки и мозг

Первая оболочка, защищающая мозг, носит название «мягкая мозговая оболочка». Она тесно прилегает к мозгу, заходит во все борозды и полости (желудочки), имеющиеся в толще самого мозга. Желудочки мозга заполнены жидкостью, которую называют ликвором или спинномозговой (цереброспинальной) жидкостью. Твердая мозговая оболочка непосредственно примыкает к костям черепа. Между мягкой и твердой оболочкой располагается паутинная (арахноидальная) оболочка. Между паутинной и мягкой оболочками существует пространство (подпаутинное или субарахноидальное пространство), заполненное ликвором. Над бороздами мозга паутинная оболочка перекидывается, образуя мостик, а мягкая сливается с ними. Благодаря этому между двумя оболочками образуются полости, называемые цистернами. В цистернах находится цереброспинальная жидкость. Эти цистерны защищают мозг от механических травм, выполняя роль «подушек безопасности».

Нервные клетки и сосуды окружены нейроглией – специальными клеточными образованиями, которые выполняют защитную, опорную и обменную функции, обеспечивая реактивные свойства нервной ткани и участвуя в образовании рубцов, в реакциях воспаления и т.п.

При повреждениях головного мозга включается механизм пластичности, когда сохранившиеся структуры головного мозга берут на себя функции пораженных участков.

  • Глава 2. Анализаторы
  • 2.1. Зрительный анализатор
  • 2.1.1. Структурно-функциональная характеристика
  • 2.1.2. Механизмы, обеспечивающие ясное видение в различных условиях
  • 2.1.3. Цветовое зрение, зрительные контрасты и последовательные образы
  • 2.2. Слуховой анализатор
  • 2.2.1. Структурно-функциональная характеристика
  • 2.3. Вестибулярный и двигательный (кинестетический) анализаторы
  • 2.3.1. Вестибулярный анализатор
  • 2.3.2. Двигательный (кинестетический) анализатор
  • 2.4. Внутренние (висцеральные) анализаторы
  • 2.5. Кожные анализаторы
  • 2.5.1. Температурный анализатор
  • 2.5.2. Тактильный анализатор
  • 2.6. Вкусовой и обонятельный анализаторы
  • 2.6.1. Вкусовой анализатор
  • 2.6.2. Обонятельный анализатор
  • 2.7. Болевой анализатор
  • 2.7.1. Структурно-функциональная характеристика
  • 2.7.2. Виды боли и методы ее исследования
  • 1 _ Легкие; 2 – сердце; 3 – тонкая кишка; 4 – мочевой пузырь;
  • 2.7.3. Обезболивающая (антиноцицептивная) система
  • Глава 3. Системный механизм восприятия
  • ЧастьIii. Высшая нервная деятельность Глава 4. История. Методы исследования
  • 4.1. Развитие концепции рефлекса. Нервизм и нервный центр
  • 4.2. Развитие представлений о внд
  • 4.3. Методы исследования внд
  • Глава 5. Формы поведения организма и память
  • 5.1. Врожденные формы деятельности организма
  • 5.2. Приобретенные формы поведения (научение)
  • 5.2.1. Характеристика условных рефлексов
  • Отличия условных рефлексов от безусловных рефлексов
  • 5.2.2. Классификация условных рефлексов
  • 5.2.3. Пластичность нервной ткани
  • 5.2.4. Стадии и механизм образования условных рефлексов
  • 5.2.5. Торможение условных рефлексов
  • 5.2.6. Формы научения
  • 5.3. Память*
  • 5.3.1. Общая характеристика
  • 5.3.2. Кратковременная и промежуточная память
  • 5.3.3. Долговременная память
  • 5.3.4. Роль отдельных структур мозга в формировании памяти
  • Глава 6. Типы внд и темперамент в структуре индивидуальности
  • 6.1. Основные типы внд животных и человека
  • 6.2. Типологические варианты личности детей
  • 6.3. Основные положения по формированию типа вид и темперамента индивидуальности
  • 6.4. Влияние генотипа и среды на развитие нейрофизиологических процессов в онтогенезе
  • 6.5. Роль генома в пластических изменениях нервной ткани
  • 6.6. Роль генотипа и среды в формировании личности
  • Глава 7. Потребности, мотивации, эмоции
  • 7.1. Потребности
  • 7.2. Мотивации
  • 7.3. Эмоции (чувства)
  • Глава 8. Психическая деятельность
  • 8.1. Виды психической деятельности
  • 8.2. Электрофизиологические корреляты психической деятельности
  • 8.2.1. Психическая деятельность и электроэнцефалограмма
  • 8.2.2. Психическая деятельность и вызванные потенциалы
  • 8.3. Особенности психической деятельности человека
  • 8.3.1. Деятельность и мышление человека
  • 8.3.2. Вторая сигнальная система
  • 8.3.3. Развитие речи в онтогенезе
  • 8.3.4. Латерализация функций
  • 8.3.5. Социально-детерминированное сознание*
  • 8.3.6. Осознаваемая и подсознательная деятельность мозга
  • Глава 9. Функциональное состояние организма
  • 9.1. Понятия и нейроанатомия функционального состояния организма
  • 9.2. Бодрствование и сон. Сновидения
  • 9.2.1. Сон и сновидения, оценка глубины сна, значение сна
  • 9.2.2. Механизмы бодрствования и сна
  • 9.3. Гипноз
  • Глава 10. Организация поведенческих реакций
  • 10.1. Уровни интегративной деятельности мозга
  • 10.2. Концептуальная рефлекторная дуга
  • 10.3. Функциональная система поведенческого акта
  • 10.4. Основные структуры мозга, обеспечивающие формирование поведенческого акта
  • 10.5. Активность нейронов и поведение
  • 10.6. Механизмы управления движением
  • Приложение. Практикум по физиологии сенсорных систем и высшей нервной деятельности
  • 1. Физиология сенсорных систем*
  • Работа 1.1. Определение поля зрения
  • Границы полей зрения
  • Работа 1.2. Определение остроты зрения
  • Работа 1.3. Аккомодация глаза
  • Работа 1.4. Слепое пятно (опыт Мариотта)
  • Работа 1.5. Исследование цветового зрения
  • Работа 1.6. Определение критической частоты слияния мельканий (кчсм)
  • Работа 1.7. Стереоскопическое зрение. Диспарантность
  • Работа 1.8. Исследование слуховой чувствительности к чистым тонам у человека (тональная аудиометрия)
  • Работа 1.9. Исследование костной и воздушной проводимости звука
  • Работа 1.10. Бинауральный слух
  • Работа 1.11. Эстезиометрия кожи
  • Показатели пространственной тактильной чувствительности кожи
  • Работа 1.12. Определение порогов вкусовой чувствительности (густометрия)
  • Показатели порогов вкусовой чувствительности
  • Работа 1.13. Функциональная мобильность сосочков языка до и после приема пищи
  • Показатели функциональной мобильности вкусовых сосочков языка
  • Работа 1.14. Термоэстезиометрия кожи
  • Определение плотности расположения терморецепторов
  • Изучение функциональной мобильности холодовых рецепторов кожи
  • Показатели функциональной мобильности холодовых рецепторов кожи
  • Работа 1.15. Определение чувствительности обонятельного анализатора (ольфактометрия)
  • Пороги обоняния различных пахучих веществ
  • Работа 1.16. Изучение состояния вестибулярного анализатора с помощью функциональных проб у человека
  • Работа 1.17. Определение порогов различения
  • Пороги различения ощущения массы
  • 2. Высшая нервная деятельность
  • Работа 2.1. Выработка мигательного условного рефлекса на звонок у человека
  • Работа 2.2. Образование условного зрачкового рефлекса на звонок и на слово «звонок» у человека
  • Работа 2.3. Исследование биоэлектрической активности коры большого мозга – электроэнцефалография
  • Работа 2.4. Определение объема кратковременной слуховой памяти у человека
  • Набор цифр для исследования кратковременной памяти
  • Работа 2.5. Связь реактивностис личностными чертами – экстраверсией, интроверсией и нейротизмом
  • Работа 2.6. Роль словесных раздражителей в возникновении эмоций
  • Работа 2.7. Исследование изменений ээг и вегетативных показателей при эмоциональном напряжении человека
  • Изменения ээг и вегетативных показателей при эмоциональном напряжении человека
  • Работа 2.8. Изменение параметров вызванного потенциала (вп) на вспышку света
  • Влияние произвольного внимания на вызванные потенциалы
  • Работа 2.9. Отражение семантики зрительного образа в структуре вызванных потенциалов
  • Параметры вп при семантической нагрузке
  • Работа 2.10. Влияние цели на результат деятельности
  • Зависимость результата деятельности от поставленной цели
  • Работа 2.11. Влияние обстановочной афферентации на результат деятельности
  • Зависимость результата деятельности от обстановочной афферентации
  • Работа 2.12. Определение устойчивости и переключаемости произвольного внимания
  • Работа 2.13. Оценка трудоспособности человека при выполнении работы, требующей внимания
  • Корректурная таблица
  • Показатели функционального состояния испытуемого
  • Результаты трудовой деятельности испытуемого
  • Работа 2.14. Значение памяти и доминирующей мотивации в целенаправленной деятельности
  • Результаты суммирования цифр
  • Работа 2.15. Влияние умственного труда на функциональные показатели сердечно-сосудистой системы
  • Работа 2.16. Роль обратной афферентации в оптимизации режима деятельности оператора у компьютера
  • Работа 2.17. Автоматический анализ показателей сердечно-сосудистой системы на разных стадиях образования двигательного навыка
  • Работа 2.18. Анализ скорости обучения оператора в детерминированных средах
  • Работа 2.19. Применение компьютера для изучения кратковременной памяти
  • Рекомендуемая литература
  • Содержание
  • 2. Высшая нервная деятельность 167
  • Локализация функций в коре большого мозга

    Общая характеристика. В определенных участках коры большого мозга сосредоточены преимущественно нейроны, воспринимающие один вид раздражителя: затылочная область – свет, височная доля – звук и т. д. Однако после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются. Согласно теории И. П. Павлова в коре большого мозга имеется «ядро» анализатора (корковый конец) и «рассеянные» нейроны по всей коре. Современная концепция локализации функций базируется на принципе многофункциональности (но не равноценности) корковых полей. Свойство мультифункциональности позволяет той или иной корковой структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей, функцию (О.С. Адрианов). Степень мультифункциональности различных корковых структур неодинакова. В полях ассоциативной коры она выше. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытия афферентных возбуждений, особенно на таламическом и корковом уровнях, модулирующее влияние различных структур, например неспецифических ядер таламуса, базальных ганглиев на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения. С помощью микроэлектродной техники удалось зарегистрировать в различных областях коры большого мозга активность специфических нейронов, отвечающих на стимулы только одного вида раздражителя (только на свет, только на звук и т. п.), т. е. имеется множественное представительство функций в коре большого мозга.

    В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифические) зоны (области).

    Сенсорные зоны коры. Сенсорная информация поступает в проекционную кору, корковые отделы анализаторов (И.П. Павлов). Эти зоны расположены преимущественно в теменной, височной и затылочной долях. Восходящие пути в сенсорную кору поступают в основном от релейных сенсорных ядер таламуса.

    Первичные сенсорные зоны – это зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма (ядра анализаторов по И. П. Павлову). Они состоят из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

    Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни – на оттенки цвета, другие – на направление движения, третьи – на характер линий (край, полоса, наклон линии) и т.п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных, или модулирующих) систем.

    Вторичные сенсорные зоны расположены вокруг первичных сенсорных зон, менее локализованы, их нейроны отвечают на действие нескольких раздражителей, т.е. они полимодальны.

    Локализация сенсорных зон. Важнейшей сенсорной областью является теменная доля постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий. Эту зону обозначают как соматосенсорную область I . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата – от мышечных, суставных, сухожильных рецепторов (рис. 2).

    Рис. 2. Схема чувствительного и двигательного гомункулусов

    (по У. Пенфильду, Т. Расмуссену). Разрез полушарий во фронтальной плоскости:

    а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре предцентральной извилины

    Кроме соматосенсорной области I выделяют соматосенсорную область II меньших размеров, расположенную на границе пересечения центральной борозды с верхним краем височной доли, в глубине латеральной борозды. Точность локализации частей тела здесь выражена в меньшей степени. Хорошо изученной первичной проекционной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах.

    В затылочной доле расположена первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеется топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет сравнительно большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные и слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности, возникают более сложные зрительные образы и их опознание.

    Во вторичных зонах ведущими являются 2-й и 3-й слои нейронов, для которых основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору, после чего инициируется (в случае необходимости) поведенческая реакция с обязательным участием двигательной коры.

    Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

    В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

    Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

    Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

    Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области, двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

    Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора лобных долей и лимбическая ассоциативная зона.

    Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

    Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

    С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

    Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

    В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

    Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

    Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

    Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

    Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы, в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

    В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

    "

    Лекция 13

    ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ ПОЛУШАРИЙ БОЛЬШОГО МОЗГА

      Общие положения

      Ядра первой сигнальной системы

      Ядра второй сигнальной системы

    Вопрос 1

    Локализация функций в коре больших полушарий

    Нервные клетки коры больших полушарий специализированы для восприятия различных видов раздражений и передачи импульсов на другие поля и ядра ЦНС. И.П. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Различные анали­заторы тесно взаимосвязаны, поэтому в коре большого мозга осуществляются анализ и синтез, выработка ответных реакций, регулирующих любые вилы деятельности человека.

    На основе строения и функций различных клеточных слоев вся кора разделена на 9 областей и 52 поля.

    Области коры больших полушарий:

    Предцентральная,

    Постцентральная,

    Островковая,

    Височная,

    Затылочная,

    Верхняя теменная,

    Нижняя теменная,

    Лимбическая.

    В коре большого мозга различают ядра и рассеянные вокруг них элементы.

    Яд­ро – это место концентрации нервных клеток коры, составляющих точную проекцию всех элементов определенного периферического рецептора.

    В ядрах коры происходят высший анализ, синтез и интеграция функций. Таким образом, кору полушарий большого мозга схематично можно представить как совокупность ядер различ­ных анализаторов, между которыми находятся рассеянные эле­менты, относящиеся к разным (смежным) анализаторам.

    Рассмотрим положение некоторых корковых концов различных анализаторов (ядер) по отношению к извилинам и долям полушарий большого мозга у человека (в соответствии с цитоархитектоническими картами).

    В 1909 году немецкий невролог Корбиниан Бродман опубликовал карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей.

    Рисунок 1 – Боковая поверхность мозга с пронумерованными полями Бродмана

    Рисунок 2 – Центральная часть мозга с пронумерованными полями Бродмана.

    Поля 3, 1 и 2 – соматосенсорная область, первичная зона, находятся в постцентральной извилине

    Поле 4 – моторная область, располагается в пределах прецентральной извилины

    Поле 5 – вторичная соматосенсорная зона, располагается в пределах верхней теменной дольки

    Поле 6 – премоторная кора и дополнительная моторная кора (вторичная моторная зона), располагается в передних отделах прецентральной и задних отделах верхней и средней лобной извилин.

    Поле 7 – третичная моторная зона, расположена в верхних отделах теменной доли между постцентральной извилиной и затылочной долей.

    Поле 8 – располагается в задних отделах верхней и средней лобной извилин, включает в себя центр произвольных движений глаз

    Поле 9 – дорсолатеральная префронтальная кора

    Поле 10 – передняя префронтальная кора

    Поле 11 – обонятельная область

    Поле 17 – ядерная зона зрительного анализатора – зрительная область, первичная зона

    Поле 18 – ядерная зона зрительного анализатора - центр восприятия письменной речи, вторичная зона

    Поле 19 – ядерная зона зрительного анализатора, вторичная зона (оценка значения увиденного)

    Поле 20 – нижняя височная извилина (центр вестибулярного анализатора)

    Поле 21 – средняя височная извилина (центр вестибулярного анализатора)

    Поле 22 – ядерная зона звукового анализатора

    Поле 24 – детектор ошибок

    Поле 28 – проекционные поля и ассоциативная зона обонятельной системы

    Поле 32 – дорсальная зона передней поясной коры. рецепторная область эмоциональных переживаний.

    Поле 37 – акустико-гностический сенсорный центр речи. это поле контролирует трудовые процессы речью, ответственно за понимание речи.

    Поле 39 – ангулярная извилина, часть зоны Вернике (центр зрительного анализатора письменной речи)

    Поле 40 – краевая извилина, часть зоны Вернике (двигательный анализатор сложных профессиональных, трудовых и бытовых навыков)

    Поле 41 – ядерная зона звукового анализатора, первичная зона

    Поле 42 – ядерная зона звукового анализатора, вторичная зона

    Поле 43 – вкусовая область

    Поле 44 – центр брока

    Поле 45 – триангулярная часть поля Бродмана (музыкальный моторный центр)

    Поле 46 – двигательный анализатор сочетанного поворота головы и глаз в разные стороны

    Поле 47 – ядерная зона пения, речедвигательная его составляющая

    Поле 52 – ядерная зона слухового анализатора, которая отвечает за пространственное восприятие звуков и речи

    Среди ядер коры больших полушарий рассматривают ядра, которые име­ются как в коре полушарий большого мозга человека, так и животных. Они специализированы на восприятии, анализе и синтезе сигналов, поступающих из внешней и внутренней среды, составляющих, по определению И.П. Павлова, первую сигнальную систему действительности. Эти сигналы воспринимаются в виде ощущений, впечатлений и представлений.

    Вторая сигнальная система имеется только у человека и обусловлена развитием речи. Речевые и мыслительные функции выполняются при участии всей коры, однако в коре большого мозга можно выделить определенные зоны, ответственные толь­ко за речевые функции. Так, двигательные анализаторы речи (устной и письменной) располагаются рядом с двигательной об­ластью коры, точнее в тех участках коры лобной доли, которые примыкают к предцентральной извилине.

    Вопрос_2

    Ядра первой сигнальной системы

    Ядра первой сигнальной системы

    1. Ядро коркового анализатора обшей (температурной, боле­вой, осязательной) и проприоцептивной чувствительности обра­зуют нервные клетки, залегающие в коре постцентральной из­вилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7). Проводящие чувствительные пути, следующие к коре большого мозга, перекрещиваются на уровне спинного мозга (пути болевой, температурной чувствительнос­ти, осязания и давления), и на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела.

    2. Ядро двигательного анализатора находится в основном в так называемой двигательной области коры, к которой относятся предцентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5-м слое (пластинке) коры предцентральной извилины залегают гигантопирамидальные нейроны (клетки Беца). И.П. Павлов относил их к вставочным и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. В верхних участках предцентральной извилины и в парацентральной дольке расположе­ны клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся двига­тельные центры, регулирующие деятельность мышц лица.

    3. Ядра анализатора, обеспечивающее функции сочетания поворота головы и глаз в противоположную сторону, расположе­но в задних отделах средней лобной извилины, в так называе­мой премоторной зоне (поле 8). Сочетанный поворот глаз и го­ловы регулируется не только при поступлении в кору лобной извилины проприоцептивных импульсов от мышц глазного яб­лока, но и при поступлении импульсов из сетчатки глаза в поле 17 затылочной доли, где находится ядро зрительного анализа­тора.

    4. Ядро двигательного анализатора расположено в об­ласти нижней теменной дольки, в надкраевой извилине (глубо­кие слои цитоархитектонического поля 40). Функциональное значение этого ядра - синтез всех целенаправленных движений. Это ядро асимметрично. У прав­шей оно находится в левом, а у левшей - в правом полушарии.

    Способность координировать сложные целенаправленные дви­жения приобретается индивидуумом в течение жизни в резуль­тате практической деятельности и накопления опыта. Целена­правленные движения происходят за счет образования времен­ных связей между клетками, расположенными в предцентральной и надкраевой извилинах. Поражение поля 40 не вызывает паралича, а приводит к потере способности производить слож­ные координированные целенаправленные движения - к апраксии (praxis - практика).

      Ядро кожного анализатора одного из частных видов чувст­вительности, которому присуща функция узнавания предметов на ощупь, - стреогнозии, находится в коре верхней те­менной дольки (поле 7). Корковый конец этого анализатора на­ходится в правом полушарии и представляет собой проекцию рецепторных полей левой верхней конечности. Так, ядро этого анализатора для правой верхней конечности находится в левом полушарии. Поражение поверхностных слоев коры в этом отде­ле мозга сопровождается утратой функции узнавания предметов на ощупь, хотя другие виды общей чувствительности при этом остаются сохранными.

      Ядро слухового анализатора расположено в глубине лате­ральной борозды, на обращенной к островку поверхности сред­ней части верхней височной извилины (там, где видны попереч­ные височные извилины, или извилины Гешля, - поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализа­тора каждого из полушарий, подходят проводящие пути от ре­цепторов как левой, так и правой стороны. В связи с этим одно­стороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение со­провождается «корковой глухотой».

      Ядро зрительного анализатора расположено на медиаль­ной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды (поля 17,18,19). Ядро зрительного анализатора правого полушария связано с прово­дящими путями от латеральной половины сетчатки правого глаза и медиальной половины сетчатки левого глаза. В коре за­тылочной доли левого полушария проецируются соответствен­но рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Как и для ядра слухового анализатора, только двустороннее поражение ядер зрительного анализатора приводит к полной «корковой слепо­те». Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, но не слепо­той. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в не­знакомой обстановке.

    8. Ядро обонятельного анализатора находится на нижней по­верхности височной доли полушария большого мозга, в области крючка и отчасти в области гиппокампа. Эти участки с точки зрения филогенеза относятся к наиболее древним частям коры большого мозга. Чувство обоняния и чув­ство вкуса тесно взаимосвязаны, что объясняется близким рас­положением ядер обонятельного и вкусового анализаторов. От­мечено также (В.М. Бехтерев), что вкусовое восприятие наруша­ется при поражении коры самых нижних отделов постцентраль­ной извилины (поле 43). Ядра вкусового и обонятельного ана­лизаторов обоих полушарий связаны с рецепторами как левой, так и правой стороны тела.

    Вопрос 3

    Ядра второй сигнальной системы

    9. Ядро двигательного анализатора письменной реч и (анализа­тора произвольных движений, связанных с написанием букв и других знаков) находится в заднем отделе средней лобной изви­лины (поле 40). Оно тесно прилежит к тем отделам предцентральной извилины, которым присуща функция двигательного анализатора руки и сочетанного поворота головы и глаз в про­тивоположную сторону. Разрушение поля 40 не приводит к на­рушению всех видов движений, а сопровождается лишь утратой способности производить рукой точные и тонкие движения приначертании букв, знаков и слов (аграфия).

    10. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах ниж­ней лобной извилины (поле 44, или центра Брока). Это ядро граничит с теми отделами предцентральной извилины, кото­рые являются анализаторами движений, производимых при сокращении мыши головы и шеи. Это понятно, так как в рече-двигательном центре осуществляется анализ движений всех мышц: губ, щек, языка, гортани, принимающих участие в акте устной речи (произношение слов и предложении). Поврежде­ние участка коры этой области (поле 44) приводит к двига­тельной афазии, т.е. утрате способности произносить слова. Такая афазия не связана с потерей функции мышц, участву­ющих в речеобразовании. Более того, при поражении поля 44 не утрачивается способность к произношению звуков или пе­нию.

    В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. По­ражение поля 45 сопровождается вокальной амузией - не­способностью к составлению и воспроизведению музыкальных фраз и аграмматизмом - утратой способности состав­лять осмысленные предложения из отдельных слов. Речь таких больных состоит из несвязанного по смысловому значению на­бора слов.

    11. Ядро слухового анализатора устной речи тесно взаимосвя­зано с корковым центром слухового анализатора и располагает­ся, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извили­ны, на стороне, обращенной к латеральной борозде полушария большого мозга (поле 42).

    Поражение ядра не нарушает слухового восприятия звуков вообще, однако при этом утрачивается способность понимать слова, речь (словесная глухота, или сенсорная афазия). Функция этого ядра состоит в том, что человек не только слы­шит и понимает речь другого человека, но и контролирует свою собственную.

    В средней трети верхней височной извилины (поле 22) нахо­дится ядро коркового анализатора, поражение которого сопро­вождается наступлением музыкальной глухоты: музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим сло­весное обозначение предметов, действий, явлений, т.е. воспри­нимающим сигналы сигналов.

    12. Ядро зрительного анализатора письменной речи располо­жено в непосредственной близости к ядру зрительного анализа­тора - в угловой извилине нижней теменной дольки (поле 39). Поражение этого ядра приводит к утрате способности воспри­нимать написанный текст, читать (алексия).

    Включайся в дискуссию
    Читайте также
    Книга: Договориться можно обо всем — Гэвин Кеннеди Договориться можно обо гэвин кеннеди pdf
    Сам себе плацебо: как использовать силу подсознания для здоровья и процветания
    Акунин кладбищенские истории скачать txt