Подпишись и читай
самые интересные
статьи первым!

Что такое переработка полимеров. "вторичная переработка полимеров". Стандартный перечень оборудования для мусороперерабатывающего завода


Проникновение полимерных материалов в самые различные области применения, включая нашу повседневную жизнь, в настоящее время воспринимается во всем мире как нечто само собой разумеющееся. И это при том что их победное шествие началось сравнительно поздно – в 1950-х гг., когда объемы их производства составляли только около 1 млн т в год. Однако с ростом производства и потребления пластмасс постепенно обострялись и в настоящее время стали крайне актуальными проблемы утилизации использованных пластиковых изделий. В данном обзоре обсуждается опыт решения этих проблем в Европе, где ведущей в этом отношении является Германия.

Благодаря своим многочисленным преимуществам (в частности, высокой прочности, химической стойкости, возможности придания любой формы и любого цвета, низкой плотности), они быстро проникли во все области применения, включая строительную, автомобильную, авиакосмическую, упаковочную отрасли промышленности, производство бытовой продукции, игрушек, изделий медицинского и фармацевтического назначения.

Уже в 1989 г. полимерные материалы обогнали по объемам производства такой традиционный материал, как сталь (имеются в виду именно объемы, а не масса). В то время их ежегодный выпуск составлял около 100 млн т. В 2002 г. производство полимерных материалов преодолело планку в 200 млн т, а в настоящее время во всем мире ежегодно их производится уже почти 300 млн т. Если рассматривать вопрос в региональном плане, то за прошедшие десятилетия наблюдалось постепенное перемещение мощностей по производству полимерных материалов в направлении Востока.

В результате Азия превратилась в настоящее время в самый мощный регион, где сконцентрировано 44 % всех мировых мощностей. На полиолефины, являющиеся наиболее широко распространенной группой пластмасс, приходится 56 % от общего объема производства; второе место занимает поливинилхлорид, а за ним следуют другие традиционные полимеры – такие как полистирол и полиэтилентерефталат (ПЭТ). Только 15 % от всех производимых полимеров приходится на дорогостоящие материалы технического назначения, используемые в специальных областях. По прогнозам европейской ассоциации производителей полимеров PlasticsEurope (г. Брюссель), в дальнейшем будет продолжаться увеличение объемов выпуска полимерных материалов на душу населения с темпом около 4 % в год. Одновременно с таким успехом на рынке увеличивались и объемы использованных полимерных материалов и изделий. Если в период с 1960-х по 1980-е гг. промышленность полимерных материалов могла еще не уделять особого внимания вопросам целесообразной утилизации и повторного использования бывшей в употреблении продукции, то позднее (особенно после вступления в силу немецкого постановления об упаковках в 1991 г.) эти проблемы стали важной темой. В то время Германия взяла на себя роль первопроходца. Она стала первой страной, в которой были разработаны и реализованы на рынке нормы утилизации и вторичной переработки полимерных отходов. В настоящее время к решению этой проблемы подключились и многие другие европейские страны, разработавшие весьма успешные концепции сбора и вторичного использования полимеров.

Согласно данным ассоциации PlasticsEurope, в 2011 г. в 27 странах Евросоюза, а также в Швейцарии и Норвегии было использовано около 27 млн т полимерных материалов, из которых 40 % пришлось на продукцию краткосрочного применения и 60 % – на изделия долгосрочного применения. В том же году было собрано около 25 млн т бывших в употреблении полимерных материалов. Из них 40 % были подвергнуты захоронению, а 60 % – направлены на вторичную переработку. Более 60 % полимерных отходов поступило из систем сбора использованных упаковок. В меньших количествах бывшие в употреблении полимерные изделия были получены из секторов строительства, автомобилестроения и электроники.

Достойные подражания системы сбора отходов существуют в девяти европейских странах – Швейцарии, Германии, Австрии, Бельгии, Швеции, Дании, Норвегии, Голландии и Люксембурге (перечислены в нисходящем порядке). Доля собираемой использованной полимерной продукции в этих странах составляет от 92 до 99 %. Кроме того, в шести из перечисленных девяти стран обеспечивается самый высокий уровень вторичной переработки этих отходов в Европе: по этому показателю (от 26 % до 35 % от объема собираемых отходов) Норвегия, Швеция, Германия, Голландия, Бельгия и Австрия намного опережают другие страны. Оставшееся количество собираемых отходов подвергается энергетической утилизации.

Не может не радовать тот факт, что в течение последних пяти лет существенно увеличилось не только количество собираемых отходов, но доля отходов, одвергаемых вторичной переработке. Благодаря этому снизились объемы отходов, подвергаемых захоронению. Несмотря на это, сектор вторичной переработки полимерных материалов еще обладает огромными потенциальными возможностями для дальнейшего развития. В значительной степени это относится к странам с низким уровнем их утилизации.

Критически эксперты рассматривают возможности энергетического вторичного использования полимерных материалов, а именно их сжигания, которое многие считают целесообразным способом их вторичной переработки. В Германии 95 % всех мусоросжигательных установок относятся к предприятиям вторичной переработки отходов и, таким образом, имеют разрешение на энергетическое вторичное применение отходов. Оценивая эту ситуацию, Михаэль Скриба (Michael Scriba), коммерческий директор специализирующейся на переработке полимерных материалов компании mtm plastics (г. Нидергебра), отмечает, что с экологической точки зрения энергетическое вторичное применение отходов бесспорно хуже материального.

В рамках индустрии пластмасс вторичная переработка за последние годы превратилась в важный хозяйственный сектор. Еще одна важная проблема, препятствующая развитию сектора вторичной переработки в Европе, заключается в экспорте полимерных отходов, преимущественно на Дальний Восток. По этой причине в Европе остается относительно небольшое количество пригодных для целесообразной вторичной переработки отходов; это способствует существенному усилению конкурентной борьбы и повышению уровня затрат.

Мощная отрасль, поддерживаемая ассоциациями и компаниями

Начиная с 1990-х гг. в качестве инициаторов интенсификации вторичной переработки пластиковых отходов в Германии выступило несколько компаний и ассоциаций, которые посвятили свою деятельность именно этим проблемам и в настоящее время активно работают в европейском масштабе.

Прежде всего, речь идет о компании Der Gruene Punkt – Duales System Deutschland GmbH (DSD) (г. Кельн), которая была основана в 1990 г. как первая дуальная система и сегодня является лидером по предложениям систем обратного приема отходов. К ним относятся наряду с приближенным к домашнему хозяйству сбором и вторичным использованием торговых упаковок экологически безопасная и экономически эффективная вторичная переработка пластиковых элементов электрических приборов и электронной аппаратуры, а также транспортных упаковок, удаление отходов с предприятий и организаций, очистка использованной тары.

В 1992 г. в г. Висбадене была основана компания RIGK GmbH, которая как сертифицированное специализированное предприятие по обслуживанию компаний (разливочных, сбытовых, торговых и импортирующих), являющихся владельцами торговых марок, осуществляет обратный прием использованных и освобожденных от остатков продукции упаковок у своих немецких партнеров и направляет эти упаковки на вторичную переработку.

Важным игроком рынка является также компания BKV, которая была основана в 1993 г. с целью обеспечения гарантированной вторичной переработки полимерных упаковок, собираемых дуальными системами. В настоящее время компания BKV служит своеобразной базовой площадкой для вторичной переработки полимерных материалов, занимаясь наиболее существенными и актуальными проблемами в этой области.

В 1993 г. была основана и еще одна важная ассоциация – Bundesverband Sekundаеrrohstoffe und Entsorgung e. V. (bvse) (г. Бонн), происхождение которой связано с объединением Altpapierverband e. V. В секторе полимерных материалов она обеспечивает компаниям Германии профессиональную и определяемую своими внутриполитическими условиями помощь при заготовке и вторичном использовании полимерных отходов. Наряду с компанией BKV, которая входит в состав ассоциации GKV Gesamtverband Kunststoffverarbeitende Industrie e.V. (г. Бад Хомбург), существуют и другие объединения и организации, занимающиеся вопросами вторичной преработки полимерных материалов. К ним относятся, в частности, компания tecpol Technologieentwicklungs GmbH, специализирующаяся на экологически эффективном рециклинге пластиковых отходов, и специализированная группа по компаундированию и вторичной переработке в организации TecPart e. V., являющейся базовым объединением ассоциации GKV. В 2002 г. ведущие немецкие производители пластиковых профилей объединились в инициативную группу Rewindo Fenster-RecyclingService GmbH (г. Бонн). Основная цель при этом заключалась в увеличении доли подвергаемых вторичной переработке демонтированных полимерных окон, дверей и рольставней (см. фото у заголовка статьи), что способствовало бы повышению стабильности и степени ответственности при проведении хозяйственной деятельности.

Само собой разумеется, в решение проблем включились крупные, имеющие собственные рабочие группы по вторичной переработке пластмасс и в течение десятилетий успешно зарекомендовавшие себя на практике ассоциации полимер- ной промышленности – такие, как PlasticsEurope и IK Industrieverband Kunststoffverpackungen e. V. (г. Франкфурт).

Успешные проверенные технологии вторичной переработки

Точную информацию о вторичной переработке пластмасс в Германии предоставляют результаты анализа, которые с периодичностью один раз в два года публикуются по заданию входящих в состав VDMA компаний и ассоциаций – BKV, PlasticsEurope Deutschland e. V., bvse, Fachverband Kunststoff und Gummimaschinen, а также союза IK. Согласно этим данным, в Германии в 2011 г. образовалось около 5 млн т пластиковых отходов, наибольшая часть (82 %) которых – это отходы потребления. Из оставшихся 18 %, представляющих собой промышленные отходы, доля пригодных для вторичной переработки материалов может достигать 90 %. Как уже проверено на практике, рассортированные промышленные отходы могут быть успешно подвергнуты внутризаводской вторичной переработке непосредственно на тех предприятиях, где они образовались (фото 1).

В случае отходов потребления доля материального (то есть без сжигания и захоронения) вторичного использования составляет всего лишь 30–35 %. В этой области также уже существуют реализованные на практике способы вторичной переработки рассортированных по видам отходов. В качестве примеров можно привести опыт переработки поливинилхлорида (ПВХ) и ПЭТ. В результате своей 10-летней деятельности компания Rewindo, использующая собственную технологию вторичной переработки отслуживших свой срок поливинилхлоридных окон и дверей, завоевала прочное положение на рынке.

В последние годы объем вторичного ПВХ, производимого из собираемых бывших в употреблении изделий специализирующимися в этой области компаниями Tоеnsmeier Kunststoffe GmbH & Co. KG (г. Хектер) и Veka Umwelttechnik GmbH (г. Херзельберг-Хайних) поддерживался на уровне около 22 тыс. т с тенденцией к увеличению.

ПЭТ-бутылки также собираются и перерабатываются после надлежащей сортировки. Ассортимент новой продукции, изготавливаемой из получаемого при этом вторичного сырья, простирается от волокон и пленок до новых бутылок. Различные компании, такие как австрийские фирмы Erema GmbH (г. Ансфельден), Starlinger & Co. GmbH (Вена) и NGR GmbH (г. Фельдкирхен), создали специальные производственные линии для переработки ПЭТ. Недавно Европейское ведомство по безопасности пищевых продуктов EFSA опубликовало положительное заключение в отношении технологии recoSTAR PET iV+ производства вторичного ПЭТ, пригодного для изготовления пищевой упаковки (разработчик – компания Starlinger).

Мнение EFSA служит основным для сертификации подобных технологий Европейской комиссией и государствами – членами Евросоюза.

Чтобы добиться такого результата, заинтересованная компания должна доказать, что разработанные ею технология и оборудование для переработки полимерных отходов снижают степень загрязнения соответствующего ПМ до уровня, безопасного для здоровья человека.

Стандартный сценарий так называемых «провокационных» испытаний (challenge-test) на эффективность очистки вторичного ПЭТ, получаемого обычно из отходов в виде использованных бутылок, предусматривает использование пяти контрольных «загрязняющих» веществ – толуола, хлороформа, фенилциклогексана, бензофенона и линдана, отличающихся химическим составом, молекулярной массой и, следовательно, миграционной способностью. Сами испытания проводятся в несколько этапов.

Сначала промывают хлопья вторичного ПЭТ, после чего их «загрязняют» контрольным веществом с заданной концентрацией (3 промилле) и снова промывают. Затем производят переработку этих повторно вымытых ПЭТ- хлопьев по тестируемой технологии в регранулят ПЭТ и определяют остаточную концентрацию «загрязняющей» среды, по которой рассчитывают степень очистки вторичного ПЭТ. В заключение оба показателя сравнивают с предельно допустимыми для них значениями и делают выводы об эффективности очистки.

В дополнение к стандартным испытаниям компания Starlinger самостоятельно решила ужесточить их сценарий, проведя их в так называемых «худших» для материала условиях (Worst-Case-Szenario), при которых перерабатывались ПЭТ-хлопья, не вымытые после их загрязнения модельными средами. Предварительно перед каждым видом испытаний – для обеспечения чистоты эксперимента и стабильных условий его проведения – на установке recoSTAR PET 165 iV+ (фото 2) осуществляли переработку 80–100 кг прозрачного первичного ПЭТ, чтобы очистить рабочие органы установки от остатков предыдущей партии материала. Испытуемые же ПЭТ-хлопья окрашивались в синий цвет; поэтому выход из этой же установки регранулята ПЭТ только синего цвета свидетельствовал о том, что в процессе переработки не произошло его смешивания с чистым ПЭТ и выдерживался принцип FIFO (first-in, first-out: «первым вошел, первым вышел»). Результаты испытаний, проведенных по стандартному сценарию, показали, что процесс recoSTAR PET iV обеспечивает настолько эффективную очистку вторичного ПЭТ, что ее показатели находятся значительно выше порогового уровня EFSA (см. таблицу). Даже в случае линдана (нелетучее неполярное вещество) степень очистки была более 99,9 %, хотя пороговым значением является 89,67 %. Практически те же результаты показали испытания, проведенные по «ужесточенному» сценарию, за исключением бензофенона и линдана. Но и в этих случаях степень очистки ПЭТ удовлетворяла требованиям EFSA. Сокращенное название фирмы NGR расшифровывается достаточно амбициозно – как «Следующее поколение машин для рециклинга» (Next Generation Recyclingmaschinen). И став в мае этого года 100%-собственником фирмы BRITAS Recycling Anlagen GmbH (г. Ханау, Германия), NGR заметно усилила свои позиции на европейском и других региональных рынках мира. Дело в том, что фирма BRITAS известна как разработчик производитель фильтрующих систем для расплавов сильно загрязненных полимерных материалов, в том числе отходов потребительской упаковки (фото 3).

В свою очередь NGR разрабатывает и производит оборудование для вторичной переработки как промышленных так и потребительских полимерных отходов, имея разветвлен- ный рынок сбыта своей продукции.

Обе машиностроительные фирмы уверены в положительном синергетическом эффекте от состоявшегося объединения. Компания Gneuss Kunststofftechnik GmbH (г. Бад Эйнхаузен) достигла на рынке большого успеха благодаря своему экструдеру типа MRS (фото 4), на использование которого имеется даже допуск FDA (Food and Drug Administration) – управления министерства торговли США по контролю за качеством пищевых продуктов, медикаментов и косметических средств. Кроме того, машиностроители предлагают различные системы для сушки, такие как инфракрасная вращающаяся труба компании Kreyenborg Plant Technology GmbH (г. Зенден), а также специальные системы фильтрации для переработки ПЭТ или технологии кристаллизации, такие как способ Crystall-Cut компании Automatik Plastics Machinery (г. Гросостхайм). Системы замкнутого цикла, такие как система PETcycle успешно применяются для изготовления новых бутылок из бывших в употреблении бутылок.

Резюмируя все вышеизложенное, можно констатировать, что система вторичной переработки ПЭТ с ежегодным объемом на уровне около 1 млн т успешно ре- ализуется в Европе. Аналогичная ситуация наблюдается в области переработки рассортированных полиолефиновых отходов, сортировка которых без особых осложнений реализуется с помощью соответствующих технологий их разделения. Только в Германии существуют десять крупных и множество мелких приготовительных предприятий, специализирующихся на производстве пригодного для литья под давлением вторичного гранулята из бытовых и промышленных полиолефиновых отходов. Этот гранулят может быть в дальнейшем использован для производства поддонов, ванн, ведер, труб и других видов продукции (фото 5).

Трудности вторичной переработки

Дополнительные сложности для вторичной переработки создают полимерные изделия, изготовленные из нескольких разных материалов, которые не могут быть с разумными затратами отделены друг от друга, а также полимерные упаковки, не поддающиеся полному опорожнению. Проблематичными для вторичной переработки являются и отходы в виде использованной потребительской пленки по причине значительного загрязнения поверхности, требующего значительных расходов на обработку.

По словам Скриба, в этой области хотя и существуют опытные эксперты по вторичному использованию, но отсутствуют реальные рынки сбыта европейского значения. Дополнительные осложнения возникают также при обращении с производимыми в большом многообразии ПЭТ-бутылками, не предназначенными для напитков; это существенно ограничивает объемы их вторичной переработки. До настоящего времени плохо поддаются рециклингу отходы из автомобильной промышленности и сектора электроники.

В таких проблемных случаях от переработчиков и машиностроителей требуются особые технические решения (фото 6). В частности, одно из таких решений, касающееся переработки поставляемых компанией DSD потребительских пленочных отходов, в недавнем прошлом компания Herbold Meckesheim GmbH (г. Меккесхайм) предоставила специализирующейся на утилизации отходов компании WRZ-Hоеrger GmbH & Co. KG (г. Зонтхайм). Поставленная «под ключ» производственная установка, состоящая из системы отделения посторонних веществ, стадии мокрого измельчения и уплотнительного устройства, позволяет перерабатывать ежегодно 7 тыс. т отходов в сыпучий агломерат с высокой насыпной плотностью, пригодный для изготовления изделий по технологии литья под давлением (фото 7).

В целом в программу поставок компании Herbold Meckesheim, известной и на российском рынке, входит разнообразное оборудование для переработки как сильно загрязненных, так и смешанных отходов, как твердых так и трудно перерабатываемых мягких отходов пластмасс – моечные установки и сушилки, шредеры, агломераторы, мельницы для тонкого измельчения.

Основными заявленными приоритетами при разработке оборудования являются его компактность, повышенная производительность и энергоэффективность. На выставке «К- 2013» фирма продемонстрирует ряд новинок, среди которых:

Новая механическая сушилка модели HVT с вертикальным расположением ротора, экономящая производственную площадь, удобная в обслуживании и потребляющая существенно меньшую энергию при сушке ПЭТ-хлопьев (фото 8);
измельчитель модели SML SB с принудительной шнековой пода- чей отходов в резательный узел, что позволяет уплотнить подаваемый материал и повысить благодаря этому производительность переработки (рис. 1);
машина для размалывания крупногабаритных твердых отходов в виде, например, плит или труб, считающихся наиболее трудным объектом переработки. Специально для переработки смешанных фракций компания Erema вместе с компанией Coperion GmbH & Co. KG (г. Штуттгарт) разработала комбинированную установку Corema для вторичной переработки и компаундирования отходов (фото 9). Характерной особенностью этой установки является ее пригодность для переработки широкого спектра материалов. По словам коммерческого директора компании Erema Манфреда Хакля Manfred Hackl), речь идет в данном случае об оптимальном решении для переработки получаемых экономичным способом смешанных отходов, в частности, для изготовления из отходов полипропиленовых нетканых материалов компаунда, содержащего 20 % талька, или для переработки отходов в виде смеси ПЭ и ПЭТ с добавками. Другим удачным примером объединения усилий нескольких партнеров для решения задач в области вторичной переработки является поточная линия по вторичной переработке бывших в употреблении сельскохозяйственных пленок, рециклинг которых сложен и затратен из-за их малой толщины, мягкости и загрязненности. Задачу удалось решить, объединив в одной линии специально оптимизированный измельчителяь модели Power Universo 2800 (производитель – компания Lindner reSource) и экструзионную установку для вторичной переработки полимерных материалов модели 1716 TVEplus производитель – компания Erema), что позволило получать высококачественный регранулят.

Оборудование, универсальное с точки зрения формы перерабатываемых в регранулят отходов (пленки, волокна, хлопья ПЭТ-бутылок, отходы вспененных полимерных материалов), предлагает австрийская фирма ARTEC Machinery. Толчком к дальнейшему развитию и расширению производственных возможностей послужило ее 100%-е вхождение в 2010 г. в «семейную» группу GAW Technology, членом которой является также фирма ECON, дополняющая программу поставок соответствующими экструзионными линиями для переработки в регранулят измельченных отходов. За счет конструкторскотехнологической модернизации выпускаемого оборудования за эти годы удалось поднять в среднем на 25 % его производительность. Модульный принцип, который исповедует ARTEC при проектировании своих установок, позволяет, как из кубиков, собирать и монтировать оборудование для конкретного применения, которое в настоящее время выпускается с производительностью от 150 до 1600 кг в час (рис. 2).

Специфическая экструзионная установка с экструдером типа MRS (см. фото 4), предназначенная для переработки измельченных отходов из полиамида ПА11, была поставлена также компанией Gneuss британской фирме K2 Polymer.

Исходный материал получают в результате измельчения глубоководных нефтепроводов, которые становятся ненужными после того, как иссякнет источник нефти, и должны быть извлечены на сушу.

Экструдер MRS (Multi Rotation System) позволяет без применения химической очистки обеспечить одноступенчатую очистку и переработку этих высококачественных, но сильно загрязненных за время многолетнего контакта с нефтью полимерных отходов. Этот перечень можно было бы дополнить и многими другими примерами. В заключение следует отметить, что сектор вторичной переработки за последние годы превратился в важную сферу хозяйственной деятельности. Несмотря на то что многие технологии уже успешно прошли проверку практикой, в области вторичной переработки остаются большие потенциальные возможности для дальнейшего развития. Решение существующих проблем должно начинаться с разработки и изготовления в максимальной степени пригодных для вторичной переработки полимерных изделий.

Определенные возможности для продвижения вперед остаются также в области разработки оптимизированных технологических решений и создания соответствующего оборудования для переработки сложных отходов.

В известной степени прогрессу в этой области могут способствовать и политические меры, которые должны в каждой стране обеспечивать более широкое внедрение оптимальных концепций сбора и вторичной переработки отходов.

Новые и проверенные решения в области вторичной переработки полимерных материалов будут широко представлены с 16 по 23 октября 2013 г. на Международной выставке «К» в Дюссельдорфе.

Подготовил к. т. н. В. Н. Мымрин
с использованием пресс-материалов выставочной компании Messe Duesseldorf
Recycling of Plastics in Europe:
New and Proven Solutions The penetration of plastics in a v ariety of
applications, including our d aily liv es, ar e now seen worldwide as a matter of course. And this
despite the fact that their winning streak started relatively late – 60 years ago, when their output
accounted for only about 1 million tons per year.

However, with the gr owth of pr oduction and consumption of plastics gradually sharpened
and has now become a critical problem disposing of used plastic pr oducts. Although many
processes hav e alr eady become established, recycling still has plenty of potential for
improvement. A first step could be the recyclable design of plastics items that should be examined
closely with a view to later r ecovery. Suitable recycling processes and machine solutions for the
processing of problematical wastes offer a good deal of scope for further dev elopment. This
review discusses the experience of solving these problems in Eur ope, wher e the leading in this
respect is Germany.

Введение

Вторичная переработка однородных полимеров - относительно простая задача, если их структура сохранилась и ни во время изготовления, ни во время первичного использования не было значительной деструкции (см., например, ). Разумеется, процесс деструкции, следствием которого могут быть структурные и морфологические изменения, вызванные уменьшением молекулярной массы, образованием ветвей, других химических групп и т. п., приводит к существенному ухудшению всех физических свойств. Если вторичные материалы, сохранившие свои свойства, могут быть использованы в тех же приложениях, что первичные полимеры, то вторичные материалы с пониженными свойствами менее можно использовать только в специфических приложениях. Поэтому при механической повторной переработке однородных полимеров задача заключается в том, чтобы избежать дальнейшей деструкции в ходе технологического процесса, то есть избежать ухудшения свойств конечного материала. Этого можно достичь правильным выбором оборудования для переработки, условий переработки (см. главы 4 и 8) и введением стабилизаторов (см. главы 3 и 7).

В этой главе мы рассмотрим связь свойств однородных полимеров с условиями их переработки (в том порядке, в котором свойства полимеров изменяются с увеличением числа шагов переработки), а также с типом применяемых машин; кроме того, мы исследуем зависимость свойств от исходной структуры.

Вторичная переработка полиолефинов и поливинилхлорида

Введение

Механическая переработка полиолефинов составляет очень важную область индустрии вторичной переработки. Разумеется, основная доля здесь приходится на сырьевые полиолефины и, соответственно, выпускается огромное число изделий из полиолефинов, а относительная легкость их сбора обусловливает простую и экономичную вторичную переработку. Как и в случае других полимеров, конечные свойства и экономическая ценность полиолефинов зависят от степени деструкции при первичном использовании и от условий вторичной переработки. Кроме того, химическое строение полиолефинов имеет очень важное значение для формирования свойств вторично переработанного полимера.

Полиэтилены

Различные структурные типы коммерческих полиэтиленов (ПЭ) сильно влияют на поведение этих материалов при вторичной переработке. Разумеется, развет-вленность (короткими или длинными цепями) влияет на кинетику деструкции, а далее и на конечные свойства повторно переработанного материала, испытавшего нескольких этапов переработки. Это поведение имеет особое значение для тех пластмасс, которые подвергаются не только термомеханической деструкции во время переработки, но также и другим деструктивным воздействиям при дальнейшем использовании. Фотоокисление и прочие виды деструкции вызывают различные структурные и морфологические изменения, зависящие от строения ПЭ.

Вторичная переработка ПЭ рассмотрена в нескольких монографиях и во множестве статей .

Соотношение свойства/этапы переработки будет рассмотрено как на примере различных типов коммерческих ПЭ, так и различных типов деструкции, которую испытывает материал при его использовании.

Полиэтилен высокой плотности

Главным источником рекуперированного полиэтилена высокой плотности (ПЭВП) являются емкости для жидкостей и упаковочная пленка; кроме того, растет объем вторичной переработки тары из-под автомобильного топлива. Во всех случаях молекулярная масса этих бывших в употреблении изделий из ПЭВП остается весьма высокой, потому что деструкция, испытываемая материалом этого типа, при краткосрочном использовании весьма незначительна. Последнее обстоятельство предполагает, что свойства вторично переработанного материала близки к таковым у исходного полимера. В табл. 5.1 приводится сравнение образцов ПЭВП, полученных из переработанных бутылок, и из исходного полимера. Хорошо видно, что большая часть свойств очень близка. Как отмечалось выше, это результат кратковременного использования бутылок и отсутствия существенной деструкции, хотя некоторое изменение строения все же, возможно, имело место во время вторичной переработки; на это указывает расширение молекулярно-массового распределения. Кроме того, значительно различаются модуль упругости и относительное удлинение при разрыве, и у переработанного материала несколько выше прочность при растяжении.

Эти различия могут быть результатом небольших изменений в структуре и морфологии. В частности, при переработке расплава ПЭ могут происходить как разрывы цепей (с уменьшением молекулярной массы), так и ветвление (увеличение молекулярной массы), на фоне которых реакции сшивания с трудом определяются по измерениям молекулярной массы, а они могут изменить конечные свойства вторичного материала.

Вторично переработанные полимеры испытывают, по крайней мере, два-три цикла переработки, и в каждом из них плавление вызывает дополнительную деструкцию материала. Кроме того, увеличение количества вторично переработанных полимеров и использование смесей из вторично переработанных и первичных материалов (см. главу 6) ведет к тому, что значительная доля рекуперированных пластиков перерабатывается вновь и вновь. Это означает, что свойства таких многократно переработанных полимерных материалов постоянно изменяются с увеличением числа циклов переработки в сторону их ухудшения. Например, в табл. 5.2 показаны изменения некоторых свойств образца из ПЭВП (канистра для топлива) после 15 циклов вторичной переработки литьем под давлением.

Хорошо видно, что изменения механических свойств относительно невелики, хотя показатель текучести расплава уменьшается значительно. Последнее обстоятельство можно объяснить сильной зависимостью вязкости от молекулярной массы и это означает, что обрабатываемость материала существенно изменилась.

Результат ясно показывает, что свойства восстановленного ПЭВП зависят не только от свойств утилизированных продуктов, но также от характера и числа циклов переработки. Кроме того, как на свойства расплавов, определяющих обрабатываемость полимера, так и на свойства твердого материала до некоторой степени влияет вторичная переработка

Таким образом, необходимо знать связь между свойствами и циклами переработки, чтобы иметь возможность до некоторой степени предусмотреть вероятные характеристики вторично переработанных пластмасс и, следовательно, определить доступные для этих материалов сферы применения. Разумеется конечные свойства будут зависеть не только от числа циклов переработки, но также от свойств рекуперированных материалов, от характера переработки и ее условий.

На рис. 5.1 показаны кривые течения образца ПЭВП (канистра). Данные относятся к образцам, прошедшим через несколько циклов переработки на одно-шнековом экструдере. Вязкость уменьшается с увеличением числа циклов вторичной переработки во всем диапазоне скоростей сдвига. Это означает, что при повторных экструзиях термомеханические напряжения, действующие на расплав, вызывают определенную деструкцию полимера. Эта простая схема, однако она находится в противоречии с тем, что наблюдалось для того же образца, проходившего через двухшнековый экструдер (рис. 5.2). В этом случае ситуация н -сколько сложнее, поскольку небольшое уменьшение вязкости имеет место только при высоких скоростях сдвига, а при низких скоростях эффект обратный Термомеханическое напряжение вызывает как разрывы цепей, так и молекулярный рост, главным образом, из-за образования длинных боковых ветвей и сшивания . Конечное молекулярное строение зависит от относительного вклада этих двух процессов. В частности, увеличение температуры и времени переработки (на одношнековом экструдере) благоприятно для разрыва цепей, в результате чего вязкость конечного расплава уменьшается. Кроме того, характер конкуренции между двумя механизмами может изменяться при избытке кислорода во время переработки или в зависимости от конкретного молекулярного строения образца ПЭВП Например, было показано, что высокое

содержании винильных групп ведет к значительному увеличению вязкости расплава - уменьшению молекулярной массы - и длинноцепному ветвлению . Влачопулос с сотр. получили, что разрывы цепей доминируют в сополимерах (что проявляется в ветвлении цепей), тогда как сшивание является главным механизмом деградации в гомополимерах. Увеличение давления экструзии по мере возрастания числа циклов переработки для последнего образца, и падение в сополимерном образце имеют место из-за увеличения и уменьшения молекулярной массы, что подтверждают данные механизмы. Это означает, что очень трудно предсказать изменение строения рекуперированного ПЭВП и, следовательно, его реологических и механических свойств, поскольку этот материал состоит из сополимерного и гомополимерного полимеров. Кроме того, гомополимеры могут содержать различное количество винильных групп. Качество экструзии материала, полученного утилизацией бутылок, проверенное в той же работе , в самом деле не зависело от проходов через экструдер, что указывало на то, что оба механизма играют одну и ту же роль, и что рекуперированный материал является, как уже предполагалось, смесью сополимера и гомополимера ПЭВП.

Приведенные данные показывают, что тип машин для повторной переработки и условия переработки существенно, а иногда и решающим образом, влияют на конечные свойства вторичного материала - в данном случае образца ПЭВП. В качестве примера на рис. 5.3 и 5.4 показаны модуль упругости и удлинение при разрыве как функция числа проходов через экструдер. Механические свойства двух образцов изменялись совершенно по разному.

Кривая модуля упругости идет вверх с числом этапов переработки, тогда как поведение удлинения при разрыве проявляет противоположную тенденцию. Более того, кривая модуля образца, переработанного в одношнековом экструдере идет выше, чем у образца, экструдированного в двухшнековом экструдере, но величины его удлинения при разрыве ниже. Неожиданный ход зависимости модуля от числа циклов переработки был объяснен увеличением кристалличности при снижении молекулярной массы. Та же причина, что вызывает снижение молекулярной массы, влечет падение удлинения при разрыве. Более выраженный рост модуля и уменьшение удлинения при разрыве образца, переработанного на одношнековом экструдере, отражает факт более значительной деструкции расплава в этой машине. Это происходит главным образом из-за большего времени переработки.

Влияние строения на механические свойства вторично переработанного ПЭВП становится понятнее, если посмотреть на величины трещиностойкости при внешнем напряжении, приведенные в табл. 5.3. Данные относятся к образцам гомополимера и сополимера, а также образца из бывшего в употреблении материала после 0 и 4 проходов через одношнековый экструдер.

Два исходных образца демонстрируют ухудшение трещиностойкости при внешнем напряжении, но у сополимера падение свойств после многократной вторичной переработки катастрофическое. Значение трещинностойкости рекуперированного материала после четырех проходов через экструдер уменьшается на

20 %, хотя он состоит в основном из сополимера. Существенное изменение величины трещинностойкости сополимера, по видимому, уравновешено улучшением поведения гомополимерной фракции.

Приведенные данные ясно показывают влияние строения ПЭВП и характера перерабатывающего оборудования на конечные свойства вторично переработанного полимера.

Основным применением вторичного ПЭВП является изготовление контейнеров для жидкостей (среди которых - многослойные бутыли с внутренним слоем из восстановленного ПЭВП), дренажных труб, гранул и пленок для пакетов и мешков для мусора.

В процессе эксплуатации изделий из полимеров появляются отходы.

Бывшие в употреблении полимеры под действием температуры, окружающей среды, кислорода воздуха, различных излучений, влаги в зависимости от продолжительности этих воздействий изменяют свои свойства. Значительные объемы полимерных материалов, которые эксплуатируются на протяжении длительного времени и выбрасываются на свалки, загрязняют окружающую среду, поэтому проблема утилизации полимерных отходов чрезвычайно актуальна. Вместе с тем, эти отходы являются хорошим сырьем при соответствующей корректировке композиций для изготовления изделий различного назначения.

К бывшим в употреблении полимерным строительным материалам относятся полимерные пленки, используемые для накрытия парников, для упаковки строительных материалов и изделий; настилы полов коровников: рулонные и плиточные полимерные материалы для полов, отделочные материалы для стен и потолков; теплозвукоизоляционные полимерные материалы; емкости, трубы, кабели, погонажные и профильные изделия и т.д.

В процессе сбора и утилизации вторичного полимерного сырья применяются различные методы идентификации полимеров. Среди множества методов наиболее распространены следующие:

· ИК–спектроскопия (сравнение спектров известных полимеров с утилизируемыми);

· ультразвук (УЗ). В основу положено затухание УЗ. Определяется индекс HL по отношению затухания звуковой волны к частоте. УЗ–прибор подключается к компьютеру и устанавливается на технологическую линию утилизации отходов. Например, индекс HL ПЭНП 2,003 10 6 сек с отклонением 1,0%, а HL ПА-66 - 0,465 10 6 сек с отклонением ± 1,5%;

· рентгеновские лучи;

· лазернопиролизная спектроскопия.

Разделение смешанных (бытовых) отходов термопластов по видам проводят следующими основными способами: флотационным, разделением в жидких средах, аэросепарацией, электросепарацией, химическими методами и методами глубокого охлаждения . Наибольшее распространение получил метод флотации, который позволяет разделять смеси таких промышленных термопластов, как ПЭ, ПП, ПС и ПВХ. Разделение пластмасс производится при добавлении в воду поверхностно-активных веществ, которые избирательно изменяют их гидрофильные свойства. В некоторых случаях эффективным способом разделения полимеров может оказаться растворение их в общем растворителе или в смеси растворителей. Обрабатывая раствор паром, выделяют ПВХ, ПС и смесь полиолефинов; чистота продуктов - не менее 96%. Методы флотации и разделения в тяжелых средах являются наиболее эффективными и экономически целесообразными из всех перечисленных выше.

Переработка полиолефинов, бывших в употреблении

Отходы сельскохозяйственной ПЭ пленки, мешков из-под удобрений, трубы различного назначения, вышедшие из эксплуатации, отходы других источников, а также смешанные отходы подлежат утилизации с последующим их использованием. Для этого применяют специальные экструзионные установки для их переработки. При поступлении полимерных отходов на переработку показатель текучести расплава должен быть не менее 0,1 г/10 мин.

Перед тем как начать переработку, производят грубое разделение отходов, учитывая их отличительные признаки. После чего материал подвергается механическому измельчению, которое может быть как при нормальной (комнатной) температуре или при криогенном способе (в среде хладоагентов, например, жидкого азота). Измельченные отходы подают в моечную машину на отмывку, производимую в несколько приемов специальными моющими смесями. Отжатую в центрифуге массу с влажностью 10–15% подают на окончательное обезвоживание в сушильную установку, до остаточного содержания влаги 0,2%, а затем в экструдер. Расплав полимера подается шнеком экструдера через фильтр в стренговую головку. На фильтре кассетного или перемоточного типа производится очистка расплава полимера от различных примесей. Очищенный расплав продавливается через стренговые отверстия головки, на выходе из которой происходит обрезка стренг ножами на гранулы определенного размера, которые затем падают в охлаждающую камеру. Проходя специальную установку, гранулы обезвоживаются, сушатся и затариваются в мешки. В случае, если необходимо переработать тонкие ПО пленки, то вместо экструдера применяют агломератор.

Cушку отходов производят различными методами, применяя полочные, ленточные, ковшовые, с «кипящим» слоем, вихревые и другие сушилки, производительность которых достигает 500 кг/ч. Из-за низкой плотности пленка всплывает, а грязь оседает на дне.

Обезвоживание и сушку пленки осуществляют на вибросите и в вихревом сепараторе, ее остаточная влажность составляет не более 0,1%. Для удобства транспортировки и последующей переработки в изделия производят грануляцию пленки. В процессе гранулирования происходит уплотнение материала, облегчается его дальнейшая переработка, усредняются характеристики вторичного сырья, в результате чего получают материал, который можно перерабатывать на стандартном оборудовании.

Для пластикации измельченных и очищенных отходов полиолефинов применяют одночервячные экструдеры с длиной шнека (25–33) D , оснащенные фильтром непрерывного действия для очистки расплава и имеющие зону дегазации, позволяющие получать гранулы без пор и включений. При переработке загрязненных и смешанных отходов используют дисковые экструдеры специальной конструкции, с короткими многозаходными червяками длиной (3,5–5) D , имеющими цилиндрическую насадку в зоне выдавливания. Материал плавится за короткий промежуток времени, причем обеспечивается быстрая гомогенизация расплава. Изменяя зазор между конусной насадкой и кожухом, можно регулировать усилие сдвига и силу трения, изменяя при этом режим плавления и гомогенизации переработки. Экструдер снабжен узлом дегазации.

Получение гранул производится в основном двумя способами: грануляцией на головке и подводным гранулированием. Выбор способа гранулирования зависит от свойств перерабатываемого термопласта и, особенно, от вязкости его расплава и адгезии к металлу. При грануляции на головке расплав полимера выдавливается через отверстие в виде стренг, которые отрезаются скользящими по фильерной плите ножами. Полученные гранулы размером 4– 5 мм (по длине и диаметру) ножом отбрасываются от головки в камеру охлаждения, а затем подаются в устройство отжима влаги.

При использовании оборудования с большой единичной мощностью применяют подводное гранулирование. При этом способе расплав полимера выдавливается в виде стренг через отверстия фильерной плиты на головке. Пройдя ванну охлаждения с водой, стренги поступают на устройство резки, где они режутся на гранулы вращающимися фрезами.

Температура охлаждающей воды, поступающей в ванну по противотоку движения стренг, поддерживается в пределах 40–60 °С, а количество воды составляет 20–40 м 3 на 1 т гранулята.

В зависимости от типоразмера экструдера (величины диаметра шнека и его длины) варьируется производительность, зависящая от реологических характеристик полимера. Число выходных отверстий в головке может быть в пределах 20–300.

Из гранулята получают упаковки для товаров бытовой химии, вешалки, детали строительного назначения, поддоны для транспортировки грузов, вытяжные трубы, облицовку дренажных каналов, безнапорные трубы для мелиорации и другие изделия, которые характеризуются пониженной долговечностью в сравнении с изделиями, полученными из первичного полимера. Исследования механизма процессов деструкции, протекающих при эксплуатации и переработке полиолефинов, их количественное описание позволяют сделать вывод о том, что получаемые изделия из вторичного сырья должны обладать воспроизводимыми физико-механическими и технологическими показателями.

Более приемлемым является добавление вторичного сырья к первичному в количестве 20–30%, а также введение в полимерную композицию пластификаторов, стабилизаторов, наполнителей до 40–50%. Химическая модификация вторичных полимеров, а также создание высоконаполненных вторичных полимерных материалов позволяет еще шире использовать полиолефины, бывшие в употреблении.

Модификация вторичных полиолефинов

Методы модификации вторичного полиолефинового сырья можно разделить на химические (сшивание, введение различных добавок, главным образом органического происхождения, обработка кремнийорганическими жидкостями и др.) и физико-механические (наполнение минеральными и органическими наполнителями).

Например, максимальное содержание гель-фракции (до 80%) и наиболее высокие физико-механические показатели сшитого ВПЭНП достигаются при введении 2–2,5% пероксида дикумила на вальцах при 130 °C в течение 10 мин. Относительное удлинение при разрыве такого материала - 210%, показатель текучести расплава составляет 0,1–0,3 г/10 мин. Степень сшивания уменьшается с повышением температуры и увеличением продолжительности вальцевания в результате протекания конкурирующего процесса деструкции. Это позволяет регулировать степень сшивания, физико-механические и технологические характеристики модифицированного материала. Разработан метод формования изделий из ВПЭНП путем введения пероксида дикумила непосредственно в процессе переработки и получены опытные образцы труб и литьевых изделий, содержащих 70–80 % гель-фракции.

Введение воска и эластопласта (до 5 масс. ч.) значительно улучшает перерабатываемость ВПЭ, повышает показатели физико-механических свойств (особенно относительное удлинение при разрыве и стойкость к растрескиванию - на 10% и с 1 до 320 ч соответственно) и уменьшают их разброс, что свидетельствует о повышении однородности материала.

Модификация ВПЭНП малеиновым ангидридом в дисковом экструдере также приводит к повышению его прочности, теплостойкости, адгезионной способности и стойкости к фотостарению. При этом модифицирующий эффект достигается при меньшей концентрации модификатора и меньшей продолжительности процесса, чем при введении эластопласта. Перспективным способом повышения качества полимерных материалов из вторичных полиолефинов является термомеханическая обработка кремнийорганическими соединениями. Этот способ позволяет получать изделия из вторичного сырья с повышенной прочностью, эластичностью и стойкостью к старению.

Механизм модификации заключается в образовании химических связей между силоксановыми группами кремнийорганической жидкости и непредельными связями и кислородосодержащими группами вторичных полиолефинов.

Технологический процесс получения модифицированного материала включает следующие стадии: сортировка, дробление и отмывка отходов; обработка отходов кремнийорганической жидкостью при 90±10 °C в течение 4–6 ч; сушка модифицированных отходов методом центрифугирования; перегрануляция модифицированных отходов.

Помимо твердофазного способа модификации предложен способ модификации ВПЭ в растворе, который позволяет получать порошок ВПЭНП с размером частиц не более 20 мкм. Этот порошок может быть использован для переработки в изделия методом ротационного формования и для нанесения покрытий методом электростатического напыления.

Наполненные полимерные материалы на основе вторичного полиэтиленового сырья

Большой научный и практический интерес представляет создание наполненных полимерных материалов на основе вторичного полиэтиленового сырья. Использование полимерных материалов из вторичного сырья, содержащих до 30% наполнителя, позволит высвободить до 40% первичного сырья и направить его на производство изделий, которые нельзя получать из вторичного (напорные трубы, упаковочные пленки, транспортная многооборотная тара и др.).

Для получения наполненных полимерных материалов из вторичного сырья можно использовать дисперсные и армирующие наполнители минерального и органического происхождения, а также наполнители, которые можно получать из полимерных отходов (измельченные отходы реактопластов и резиновая крошка). Наполнению можно подвергать практически все отходы термопластов, а также смешанные отходы, которые для этой цели использовать предпочтительней и с экономической точки зрения.

Например, целесообразность применения лигнина связана с наличием в нем фенольных соединений, способствующих стабилизации ВПЭ при эксплуатации; слюды - с получением изделий, обладающих низкой ползучестью, повышенной тепло- и атмосферостойкостью, а также характеризующихся небольшим износом перерабатывающего оборудования и низкой стоимостью. Каолин, известняк, сланцевая зола, угольные сферы и железо применяются как дешевые инертные наполнители.

При введении в ВПЭ мелкодисперсного фосфогипса, гранулированного в полиэтиленовом воске, получены композиции, имеющие повышенное удлинение при разрыве. Этот эффект можно объяснить пластифицирующим действием полиэтиленового воска. Так, прочность при разрыве ВПЭ, наполненного фосфогипсом, на 25% выше, чем у ВПЭ, а модуль упругости при растяжении больше на 250%. Усиливающий эффект при введении во ВПЭ слюды связан с особенностями кристаллического строения наполнителя, высоким характеристическим отношением (отношением диаметра чешуйки к толщине), причем применение измельченного, порошкообразного ВПЭ позволяет сохранить строение чешуек при минимальном разрушении.

Среди полиолефинов наряду с полиэтиленом значительные объемы приходятся на производство изделий из полипропилена (ПП). Повышенные прочностные свойства ПП в сравнении с полиэтиленом и стойкость его по отношению к окружающей среде свидетельствует об актуальности его рециклинга. У вторичного ПП содержится ряд примесей, таких как Ca, Fe, Ti, Zn, которые способствуют зародышам кристаллообразования и созданию кристаллической структуры, что приводит к повышению жесткости полимера и большим значениям как исходного модуля упругости, так и квазиравновесного. Для оценки механической работоспособности полимеров используют метод релаксационных напряжений при различных температурах. Вторичный ПП в одних и тех же условиях (в диапазоне температур 293–393 К) выдерживает гораздо большие механические напряжения без разрушения, чем первичный, что позволяет использовать его для изготовления жестких конструкций.

Переработка полистирола, бывшего в употреблении

Полистирольные пластики, бывшие в употреблении, могут быть использованы в следующих направлениях: утилизация технологических отходов ударопрочного полистирола (УПС) и акрилонитрилбутадиен-стирольного (АБС) – пластика методами литья под давлением, экструзии и прессования; утилизация изношенных изделий, отходов пенополистирола (ППС), смешанных отходов, утилизация сильно загрязненных промышленных отходов .

Значительные объемы полистирола (ПС) приходятся на вспененные материалы и изделия из них, плотность которых находится в пределах 15–50 кг/м 3 . Из этих материалов изготавливают матрицы форм для упаковки, кабельную изоляцию, ящики для затаривания овощей, фруктов и рыбы, изоляцию холодильников, рефрижератов, поддоны для ресторанов фаст-фуд, опалубку, теплозвукоизоляционные плиты для изоляции зданий и сооружений и т.д. Кроме того, при транспортировании бывших в употреблении таких изделий резко снижаются транспортные расходы из-за низкой насыпной плотности отходов вспененного ПС.

Один из основных методов рециклинга отходов вспененного полистирола - механический способ переработки. Для агломерации применяют специально разработанные машины, а для экструдирования - двухшнековые экструдеры с зонами дегазации.

Пункт потребителя является основным местом размещения оборудования для механического рециклинга отходов изделий из вспененного полистирола, бывших в употреблении. Загрязненные отходы вспененного ПС подлежат осмотру и сортируются. При этом извлекаются загрязнения в виде бумаги, металла, других полимеров и различных включений. Полимер измельчается, моется и подвергается сушке. Для обезвоживания полимера используется метод центрифугирования. Окончательное измельчение производится в барабане, а из него отходы поступают в специальный экструдер, в котором подготовленный к переработке полимер сжимается и расплавляется при температуре около 205–210 °C. Для дополнительной очистки расплава полимера устанавливается фильтр, который работает по принципу перемотки фильтрующего материала или кассетного типа. Отфильтрованный расплав полимера поступает в зону дегазации, где шнек имеет более глубокую нарезку в сравнении с компрессионной зоной. Далее расплав полимера поступает в стренговую головку, стренги охлаждаются, сушатся и гранулируются. В процессе механической регенерации отходов ПС происходят процессы деструкции и структурирования, поэтому важно, чтобы материал подвергался минимальному напряжению сдвига (функция геометрии шнека, числа оборотов и вязкости расплава) и малому времени пребывания под термомеханической нагрузкой. Снижение деструктивных процессов производится за счет галогенирования материала, а также введения в полимер различных добавок.

Механический рециклинг вспененного полистирола регулируется исходя из области применения вторичного полимера, например, для получении изоляции, картона, облицовки и т.д.

Существует метод деполимеризации отходов полистирола. Для этого отходы ПС или вспененного ПС измельчаются, загружаются в герметический сосуд, нагреваются до температуры разложения, а выделяющийся вторичный стирол охлаждается в холодильнике и полученный таким образом мономер собирается в герметическом сосуде. Метод требует полной герметизации процесса и значительных энергозатрат.

Переработка поливинилхлорида (ПВХ), бывшего в употреблении

Рециклинг вторичного ПВХ предусматривает переработку бывших в употреблении пленок, фитингов, труб, профилей (в т.ч. оконных рам), емкостей, бутылок, плит, рулонных материалов, кабельной изоляции и т.д.

В зависимости от состава композиции, которая может состоять из винипласта или пластиката и назначения вторичного ПВХ, способы рециклинга могут быть различными.

Для вторичного использования отходы ПВХ продукции подвергаются мойке, сушке, измельчению и сепарации различных включений, в т.ч. металлов. Если изделия изготовлены из композиций на основе пластифицированного ПВХ, то чаще всего используют криогенное измельчение. Если изделия изготовлены из жесткого ПВХ, то применяют механическое дробление.

Пневматический способ применяют для отделения полимера от металла (провода, кабели). Выделенный пластифицированный ПВХ может перерабатываться методом экструзии или литья под давлением. Метод разделения по магнитным свойствам может быть использован для удаления металлических и минеральных включений. Для отделения алюминиевой фольги от термопласта используют нагрев в воде при 95–100 °C.

Отделение этикеток от негодных контейнеров производится методом его погружения в жидкий азот или кислород с температурой около –50 °C, что придает этикеткам или адгезиву хрупкость и позволяет затем их легко измельчить и отделить однородный материал, например, бумагу. Для переработки отходов искусственных кож (ИК), линолеумов на основе ПВХ предлагается способ сухой подготовки пластмассовых отходов с помощью компактора. Он включает ряд технологических операций: измельчение, сепарацию текстильных волокон, пластикацию, гомогенизацию, уплотнение и грануляцию, где можно также вводить добавки.

Отходы кабеля с ПВХ изоляцией поступают в дробилку и транспортером подаются в загрузочный бункер криогенной шахты, которая представляет собой герметичную емкость со специальным транспортирующим шнеком. В шахту подается жидкий азот. Охлажденные дробленые отходы выгружаются на станок для измельчения, а оттуда они поступают на устройство для сепарации металлических включений, где хрупкий полимер осаждается и пропускается через электростатическую корону барабана сепаратора и там производится извлечение меди.

Значительные объемы бутылок из ПВХ, бывших в употреблении, требуют различных методов их утилизации. Заслуживает внимания метод разделения ПВХ от различных примесей по плотности раствора нитрата кальция в ванне.

Механический процесс рециклинга ПВХ бутылок предусматривает основные стадии процесса переработки отходов вторичных термопластов, но в отдельных случаях имеет свои отличительные особенности.

В процессе эксплуатации различных зданий и сооружений образуются значительные объемы металлопластиковых оконных рам на основе ПВХ композиций, бывших в употреблении. Поступающие на повторную переработку ПВХ рамы с каркасом, бывшие в употреблении, содержат приблизительно 30 %масс. ПВХ и 70 %масс. стекла, металла, дерева и резины. В среднем оконная рама содержит около 18 кг ПВХ. Поступающие рамы сгружаются в емкость шириной 2,5 м и длиной 6,0 м. Затем они спрессовываются на горизонтальном прессе и превращаются в секции длиной в среднем до 1,3–1,5 м, после чего материал допрессовывается с помощью катка и поступает на измельчитель, в котором ротор вращается с регулируемой скоростью. Крупная смесь из ПВХ, металла, стекла, резины и древесины подается на конвейер, а затем на магнитный сепаратор, где происходит отделение металла, а после чего материал поступает на вращающий сепарационный металлический барабан. Эта смесь классифицируется на частицы размером <4 мм, 4–15 мм, 15–45 мм, >45 мм.

Фракции (>45 мм) больше обычного размера возвращаются на повторное дробление. Фракцию размером 15–45 мм отправляют на разделитель металла, а затем к отделителю резины, представляющему собой вращающийся барабана с резиновой изоляцией.

После удаления металла и резины эту грубую фракцию отправляют назад на измельчение для дальнейшего уменьшения размера.

Полученная смесь размером частиц 4– 15 мм, состоящая из поливинилхлорида, стекла, мелкого остатка и деревянных отходов из силоса подается через сепаратор на барабанное сито. Здесь материал разделяется снова на две фракции размером частицы: 4–8 и 8– 15 мм.

Для каждого диапазона размера частицы используются по две отдельных линий обработки, которые в общей сложности составляют четыре линии обработки. Разделение дерева и стекла имеет место в каждой из этих линий обработки. Дерево отделяется путем использования наклонных вибрирующих воздушных сит. Дерево, которое легче относительно других материалов, транспортируется вниз потоком воздуха, а более тяжелые частицы (поливинилхлорид, стекло) транспортируются вверх. Разделение стекла выполнено в подобной манере на последующих ситах, где более легкие частицы (т.е. поливинилхлорид), транспортируются вниз, в то время как тяжелые частицы (т.е. стекло) транспортируются вверх. После удаления дерева и стекла соединяются фракции поливинилхлорида от всех четырех линий обработки. Металлические частицы обнаруживаются и удаляются с помощью электроники.

Очищенный поливинилхлорид поступает в цех, где он увлажняется и гранулируется до размера 3– 6 мм, после чего гранулы сушатся горячим воздухом до определенной влажности. Поливинилхлорид разделяется на четыре фракции размером частиц 3, 4, 5 и 6 мм. Любые гранулы с завышенными размерами (то есть > 6 мм) возвращаются на участок для повторного измельчения. Резиновые частицы отделяются от поливинилхлорида на вибрационных ситах.

Заключительный этап заключается в оптикоэлектронном процессе сортировки цвета, который отделяет белые частицы поливинилхлорида от цветных. Это выполняется для фракций каждого размера. Так как количество цветного поливинилхлорида является небольшим по сравнению с белым поливинилхлоридом, производится сортировка по размеру белых фракций поливинилхлорида, которые сохраняются в отдельных бункерах, пока цветные потоки поливинилхлорида смешиваются и сохраняются в одном бункере.

У процесса есть некоторые специальные особенности, которые делают операции экологически чистыми. Загрязнения воздуха не происходит, так как измельчение и воздушная сепарация оснащены системой извлечения пыли, собирающей пыль, бумагу и фольгу в воздушном потоке и подающей их в ловушку микрофильтра. Измельчитель и барабанное сито изолированы, чтобы уменьшить возникновение шума.

Во время мокрого измельчения и мытья поливинилхлорида от загрязнений вода подается на повторную очистку.

Переработанный поливинилхлорид используется в производстве новых профилей окна, полученных методом соэкструзии. Чтобы получить высокое качество поверхности, требуемое для оконных рам, профили которых получены методом соэкструзии, внутренняя поверхность рам выполнена из вторичного переработанного поливинилхлорида, а внешняя поверхность - из первичного поливинилхлорида. Новые рамы включают 80% веса переработанного поливинилхлорида и по механическим и эксплуатационным свойствам сопоставимые с рамами, изготовленными из 100% первичного поливинилхлорида.

К основным методам переработки отходов поливинилхлоридных пластиков относятся литье под давлением, экструзия, каландрование, прессование.

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Вторичная переработка полимеров в России становится все более перспективной. Увеличивается количество проектов по раздельному сбору отходов, а продукция, изготовленная с использованием таких материалов, находит широкое применение в различных отраслях. Однако развитию рынка все еще мешает ряд факторов.

16 февраля в Москве прошла Четвертая международная конференция «Вторичная переработка полимеров 2018». Партнерами стали компании Viscotec и KRONES, генеральным информационным партнером - журнал «Полимерные материалы». Мероприятие прошло при поддержке ГК INTRATOOL, EREMA и PETplanet.

Генеральный директор INVENTRA Рафаэль Григорян, приветствуя собравшихся, отметил, что региональные операторы в перспективе могут стать крупнейшими игроками в сегменте вторичной переработки полимеров. Их основной источник доходов сегодня - оплачиваемый населением тариф по управлению отходами, но объемы поступающих средств могут быть недостаточны для получения прибыли. В данной связи региональные операторы, обладающие обширной ресурсной базой, заинтересованы в сортировке, переработке и производстве товаров из вторсырья, дабы извлечь максимальную выгоду.

Обсуждение состояния дел в сегменте началось с выступления председателя совета директоров ГК «Чистый город» Полины Вергун, которая сообщила, что сфера обращения с отходами в России выглядит следующим образом: 5% отправляются на переработку, 10% - на полигоны, отвечающие экологическим требованиям, а 85% попадают на объекты, которые не обеспечивают экологическую безопасность.

Среди основных проблем отрасли г-жа Вергун выделила: размещение отходов на несанкционированных свалках и отсутствие достаточного количества объектов сферы обращения с отходами. А основные трудности в сегменте вторичной переработки - отсутствие сортировочных и перерабатывающих мощностей, разрозненность рынка и неразвитость системы раздельного сбора.

Решение вышеперечисленных проблем, по словам выступающей, уже найдено: внедрение института регионального оператора в сфере обращения с отходами, запрет на захоронение отдельных компонентов и увеличение ставок и нормативов экологического сбора. Также эксперт отметила, что важно участие малого бизнеса в организации деятельности по обращению с отходами.

«Учитывая проводимую реформу по обращению с отходами, важно начать строительство федеральных экотехнопарков, перерабатывающих вторичное сырье, которое будет отбираться на вводимых в настоящий момент региональных технопарках уже сегодня, т.к. имеющихся перерабатывающих мощностей будет недостаточно для объемов вторсырья в новой системе, - продолжила г-жа Вергун, - в ее рамках проходит взаимодействие на уровне региональных и федеральных экотехнопарков, определяются направления переработки вторичного сырья с целью импортозамещения и вырабатываются совместные решения по усовершенствованию нормативно-правовой базы, в том числе - обоснование увеличения нормативов и ставок утилизации».
Кроме того, выступающая отметила, что в ближайшие несколько лет сбор пластиковых отходов увеличится в разы и не совсем понятно, есть ли на сегодняшний день в России достаточный объем потребления изделий из вторичных полимеров. «Мы готовы на своей территории дать определенные мощности для развития сторонних предприятий, если это будет целесообразно и выгодно обеим сторонам» - резюмировала г-жа Вергун.

Председатель совета директоров «Экотехнологии» Константин Рзаев рассказал о своем видении ситуации и напомнил, что всего в России потребляется 5 млн т полимерного сырья, внушительная часть которых остаётся в использовании на десятки лет (рамы окон, трубы, геоматериалы), а в «мусор» попадает прежде всего полимерная упаковка.

По мнению докладчика, с учетом предполагаемого резкого увеличения сбора пластиковых отходов на сортировках усилиями региональных операторов можно ожидать дополнительно 100–150 тыс. т ПЭТ и еще несколько сотен тысяч тонн другой полимерной упаковки в ближайшие несколько лет.

Г-н Рзаев в продолжение разговора отметил, что предыдущие два-три года задали некоторые тренды в сфере переработки отходов пластмасс, появились факторы, влекущие за собой рост отрасли и новые возможности. Среди таковых докладчик отметил принятие законов 458 и 503 Ф3, введение расширенной ответственности производителя, запуск все большего числа мусоросортировочных комплексов, а также начатую с 2018 г. реализацию запрета на захоронение отходов, в состав которых входят полезные компоненты. Территориальные схемы разработаны почти во всех регионах, примерно треть из них выбрали регоператоров по обращению с ТКО, все больше организаций узнают о расширенной ответственности производителя и экологическом сборе.

Безусловно, экологичность становится трендом. Но у сегмента по-прежнему существуют проблемы: низкие масштабы сбора фракций для переработки, высокая доля игроков, остающихся «в тени», неструктурированность отрасли - изменится ли это в наступившем году? Вопрос остается открытым.


Эксперт оценил потребление вторичного ПЭТФ (в виде ПЭТ-хлопьев) на 2017 г. в 151 тыс. т, из которых внутреннее производство - 136 тыс. т, импортировано примерно 16 тыс. т, а на экспорт ушло 877 т. Практически 100% импорта - ПЭТ-хлопья для производства полиэфирного волокна. Среди крупнейших стран-поставщиков: Украина, Белоруссия-Казахстан-Кыргызстан, Литва, Азербайджан и Великобритания.

Структура потребления вторичного ПЭТФ на сегодняшний день выглядит следующим образом: 65.4% приходится на полиэфирное волокно, около 18% - преформы, 12.7% - лента, шпагат, на пленку и листы - 2.7% и менее 1% - остальные сегменты (смолы и др.) Крупнейшие переработчики - производители полиэфирного волокна («Комитекс», «РБ-Групп», «Технопласт», «Политекс», «Номатекс», «Селена», «Вторком»), «Спекта» (лидер российского рынка упаковочных лент), а также единственный производитель ПЭТ-гранулята пищевого качества завод «Пларус».

Объем поставок вторичного полиэтилена в Россию, для сравнения, в 2014 г. был 1.9 тыс. т, к 2016 г. поднялся до 3.3 тыс т, однако в 2017 г. вновь опустился и составил примерно 3.1 тыс. т. Среди крупнейших поставщиков по данным за прошедший год - Польша (2.2 тыс. т) и Болгария (777 т).

В Европе в среднем производится 492 кг отходов на человека в год, из которых перерабатывается меньшая часть - 42%, а оставшиеся 58% захороняются или сжигаются, сообщил генеральный директор PET Baltija Каспарс Фогельманис в своем докладе, посвященном рециклингу пластмасс в Европе.

Сегодня практически 50% всего собираемого и перерабатываемого объема пластика в ЕС приходится на Францию, Германию и Италию. К этим странам примыкают Испания и Великобритания, формируя пятерку крупнейших игроков и собирая около 71% всего объема отходов в Ес. Европейской Комиссией предложено увеличить процент переработки всего потока пластиковых отходов в ЕС до 55% к 2025 г.


Импорт ПЭТ-отходов в Китай сократился в 3-м квартале 2017 г. на 177.6 тыс. т или 26% по сравнению с показателями за 2016 г., которые составили 517 тыс. т. К концу 2017 г. китайскими властями был запрещен ввоз 24 видов материалов, включая бумагу и пластик. По заявлению правительства страны, впредь они будут принимать только перерабатываемые материалы с уровнем загрязнения не более 0.3%.

Очевидно, что запрет, наложенный Китаем, влияет на переработку по всему миру: это распространяется на страны ЕС-27, где 87% собираемого переработанного пластика доставляется непосредственно или косвенно через Гонконг в Китай. Япония и США также пользуются тем, что Китай скупает их переработанный пластик. В прошлом году Америка экспортировала 1.42 млн т пластиковых отходов, что, по оценке г-на Фогельманиса, принесло Китаю почти $500 млн.


С докладом о механизмах реализации расширенной ответственности производителя (которые предусмотрены двумя способами: самостоятельно или через оплату экологического сбора) выступила исполнительный директор «РусПЭК» Любовь Меланевская.

«По плану государство в 2017 г. должно было собрать 6.5 млрд руб. в качестве экологического сбора, а по факту собрали 1.3 млрд руб. Что нужно, чтобы РОП заработала? Понятные правила игры, равноправный вклад бизнеса, государства и населения, а также поддержка „первых ласточек“ по самостоятельной реализации РОП», - поделилась г-жа Меланевская.

К успеху в сложившейся ситуации, по словам выступающей, может привести синхронное принятие законодательных актов, наделение обязательствами органов власти по внедрению раздельного сбора мусора и ответственностью за недостижение целевых показателей по РСО, а также внедрение инфраструктуры по РСО. Законом по РСО, принятым в конце 2017 г., положено начало перемен. Последуют ли дальнейшие улучшения? Время покажет.


Руководитель проекта «ТехноНИКОЛЬ» Анна Даутова считает, что в России пока отсутствует культура и широкая практика сбора и переработки полистирольных отходов, но этот процесс может возглавить их компания, и тогда важная экологическая проблема в масштабах страны будет решаться.

Переработка полистирольных отходов требует менее 10% от ресурсов, совокупно затраченных на производство первичных полимеров. При этом для выпуска ряда изделий можно в большом объеме использовать вторичные. Говоря о мировом опыте, выступающая отметила, что компании Torox и Ursa - основные игроки на европейском рынке вторпереработки полистирола. По предоставленным докладчиком данным, ежегодно в Европе вторично перерабатывается 50 тыс. т вспененного полистирола, а в Японии, при емкости рынка первичного вспененного полистирола в 132 тыс. т, собирается и используется повторно 125 тыс. т.

Генеральный директор дочерней компании «Ерема» Калоян Илиев представил информацию о предварительной вакуумной обработке при повышенной температуре перед экструзией, благодаря которой в стабильной технологической среде влажность и миграционные вещества удаляются из материала уже до экструзии. Такая обработка и короткий экструзионный шнек обеспечивают непрерывное производство одобренных для пищевого применения ПЭТФ-гранул с высокими и стабильными значениями вязкости и хорошими показателями цвета.

Повышаются мировые показатели по сбору отходов, Азия - лидер. Законодательство становится строже: поощряется переработка материалов и одновременно вводятся ограничения по захоронению отходов и использованию энергии, что, однозначно, должно отразиться на мировой экологии положительно, сообщил начальник отдела продаж Krones Питер Хартель и рассказал о решениях компании по переработке пластмасс. Модульные системы Krones полностью адаптируются под индивидуальные потребности и могут поставляться как отдельными машинами, так и в виде заводов под ключ. Технология переработки MetaPure позволяет получать хлопья или гранулы различного качества, вплоть до ПЭТ пищевого класса в соответствии с FDA и другими системами сертификации.

В завершение разговор зашел о ПЭТ-упаковке. По утверждению представителя Starlinger Viscotec Герхарда Оссбергера, есть три условия успешной ПЭТ-упаковки: оптический вид (яркий цвет, полная прозрачность и никаких дефектов), пищевая безопасность (100% безопасная упаковка для здоровья человека), механические характеристики (максимальная возможность штабелирования и складирования, прочность). Сушка deCON и экструзионная линия viscoSHEET удаляет пыль, чтобы уменьшить визуальные дефекты, сушит сырьё для обеспечения максимальной вязкости и при этом максимальной прочности, а также очищает входящее вторичное сырьё для 100% пищевой безопасности. Таким образом Viscotec создаёт качественную «защиту» для товара.


Термопласты -это пластмассы, которые после формования изделия сохраняют способность к повторной переработке. Они могут многократно размягчаться при нагревании и затвердевать при охлаждении, не теряя своих свойств. Именно этим обусловлен огромный интерес к вторичной переработке термопластовых отходов -как бытовых, так и промышленных.

Состав твердых бытовых отходов (ТБО) в столице заметно отличается от среднего по России. Ежегодно в Москве образуется порядка 110 тыс. т твердых бытовых отходов. Из них полимерных — 8-10 %, а в коммерческих отходах крупных предприятий эта цифра достигает 25 %.

Отдельно в структуре ТБО следует выделить пластиковые бутылки. Ежегодно только в Москве их выбрасывается порядка 50 тыс. т. Согласно результатам Международной научно-практической конференции «Упаковка и окружающая среда», 30 % всех полимерных отходов составляют бутылки из полиэтилена и поливинилхлорида. Однако в настоящее время, по данным ГУП «Промотходы», в Москве и области ежегодно перерабатывается не более 9 тыс. т полимерных отходов, выделенных из ТБО. Причем половина из них — на территории Московского региона. Каковы же причины столь незначительной переработки термопластовых отходов?

Организация сбора

На сегодняшний день задействованы несколько каналов сбора пластмассовых отходов.

Первый и основной из них — сбор и вывоз отходов крупных торговых комплексов. Это сырье представляет собой преимущественно использованную упаковку и считается наиболее «чистым» и лучше всего подходящим для дальнейшего применения.

Второй путь — селективный сбор мусора. На юго-западе Москвы городская администрация совместно с ГУП «Промотходы» проводит такой эксперимент. Во дворах нескольких жилых домов установлены специальные немецкие евроконтейнеры. Крышки у контейнеров с отверстиями: круглые — для ПЭТ-бутылок, большая прорезь — для бумаги. Контейнеры запираются, за ними ведется постоянный надзор. За два года собрано 12т пластиковых бутылок. Сегодня проект включает в себя лишь 19 жилых домов. По мнению экспертов, при охвате территории с проживанием более 1 млн. жителей выгода такой системы становится очевидной.

Третий вариант — сортировка ТБО на специализированных предприятиях (опытно-промышленный центр по сортировке отходов «Котляково», частное предприятие МСК-1, другие мусоросортировочные комплексы). Точно определить объем отсортированных отходов пока довольно сложно, однако доля этого источника вторичного сырья уже заметна. Некоторые коммерческие организации под контролем муниципальных властей организуют собственные пункты приема вторичного сырья (в том числе полимерных отходов) у населения. Там же обычно происходит первичная сортировка и прессование. Тем не менее, таких пунктов в городе крайне мало.

Заметная доля идущего на переработку вторичного сырья нелегально собирается на полигонах. Этим занимаются частные фирмы, а порой и управления самих полигонов. Собранные и отсортированные материалы продаются перекупщикам или напрямую производителям.

При переработке термопластов очень важна однородность используемых полимеров, степень загрязненности, цвет и вид (пленка, бутылки, лом), форма поставляемых отходов (спрессованность, упаковка и т. п.). В зависимости от этих и ряда других параметров степень пригодности конкретной партии к дальнейшей обработке (и, следовательно, ее рыночная стоимость) может заметно колебаться. Дороже всего стоит макулатура.

Сортировку, дробление и прессовку могут производить многочисленные посредники, мусоросортировочные комплексы, сами переработчики, структуры ГУП «Промотходы».

В большинстве случаев применяется ручная сортировка, поскольку соответствующее оборудование дорого и не всегда эффективно.

Переработка полимеров

Собранные и отсортированные отходы могут быть переработаны во вторичный гранулят либо сразу пойти на производство новой продукции (хозяйственные мешки и пакеты, одноразовая посуда, футляры для видеокассет, дачная мебель, полимерные трубы, древесно-полимерные плиты и т. п.).

Переработкой полимерных бытовых отходов в промышленном масштабе в Москве занимается только ОАО НИИ ПМ (производство изделий для нужд городского хозяйства в рамках программы по раздельному сбору мусора в Юго-Западном АО и по заказу столичной мэрии). ГУП «Промотходы» осуществляет дробление, мытье и сушку, далее хлопья по цене 400 $ за т везутся на дальнейшую переработку в НИИ ПМ.

Другие переработчики вторичного сырья либо слишком малы (мощности до 20 т в месяц), либо под видом переработки занимаются дроблением и дальнейшей перепродажей, в лучшем случае добавляют в свою продукцию дробленое сырье. Масштабным производством вторичного гранулята и агломерата в Москве практически никто не занимается.

По другим сведениям (Н.М. Чалая, НПО «Пластик»), переработкой полимеров, содержащихся в московских отходах, занимается множество мелких фирм, для которых эта деятельность не является основной. Ее стараются не афишировать, поскольку принято считать, что использование вторсырья при производстве продукции ухудшает ее качество.

Типичной компанией для данного рынка является производственный кооператив «Вторполимер», работающий напрямую с городской свалкой. Обитающие на свалке бомжи собирают там все пластмассовое: бутылки, игрушки, битые ведра, пленку и т. п. За определенную плату «товар» сдается посредникам, а они доставляют его во «Вторполимер». Здесь отслужившие свой век вещи моются и отправляются на переработку. Их сортируют по цвету, дробят и добавляют в пластмассу, которая идет на изготовление монтажных труб (они применяются при строительстве новых домов для изоляции электропроводки). Закупочная цена грязного пластикового лома — 1 тыс. руб. за т, чистого — 1,5 тыс. Более мелкие партии принимаются по цене 1 и 1,5 руб. за-кг соответственно.

Сортировка полимерных отходов осуществляется вручную. Основной критерий отбора — внешний вид изделия или соответствующая маркировка. Без маркировки упаковку из полистирола, поливинилхлорида или полипропилена визуально не различить. Бутылки чаще всего считают ПЭТ, пленку — полиэтиленом (конкретный вид ПЭ обычно не определяют), хотя она может вполне оказаться ПП или ПВХ. Линолеум — в основном ПВХ, вспененный полистирол (пенопласт) легко идентифицируется визуально, капроновые волокна и изделия технического назначения (шпули, втулки) обычно сделаны из полиамида. Вероятность совпадений при такой сортировке — около 80 %.

Анализ деятельности фирм, работающих на рынке вторичных материалов, позволяет сделать следующие выводы:

1) цены вторичных материалов на рынке определяются степенью их подготовки к переработке. Если взять за 100 % стоимость первичного полиэтиленового гранулята низкой плотности, то цена чистой измельченной подготовленной к переработке полиэтиленовой пленки составляет от 8 до 13 % стоимости первичного полимера. Цена агломерата полиэтилена — от 20 до 30 % стоимости первичного полимера;

2) цена большинства гранулированных вторичных полимеров, усредненных по составу, составляет от 45 до 70 % цены первичных полимеров;

3) цена вторичных полимеров сильно зависит от их цвета, то есть от качества предварительной сортировки полимерных отходов по цветам. Разница в цене вторичных полимеров чистых и смешанных цветов может достигать 10-20 %;

4) цены на изделия, полученные из первичных и вторичных полимеров, как правило, практически одинаковы, что делает использование вторичных полимеров в производстве исключительно выгодным.

В среднем цена на полимерные отходы, выделенные из ТБО, в зависимости от степени подготовленности, партии и вида колеблется от 1 до 8 руб./кг. Цены закупки у переработчиков в зависимости от партии и уровня загрязнения отражены в таблице 1.

Вид полимера

Цена за грязные отходы, руб. /кг

Цена за чистые отходы, руб. /кг

Цены за чистые отходы, $/т (на апрель 2002 г.)

Полистирол

Полиамид

Таблица 1

Цена чистых отходов из ТБО обычно равна цене промышленных и коммерческих отходов.

Рыночная цена закупки переработчиком полимерных отходов из ТБО складывается из цены закупки посредником у населения (примерно 25 % стоимости), платы за формирование крупнотоннажных партий отходов, сортировку, прессование и даже отмывку для наиболее дорогого (чистого) сырья.

Цены на такие продукты, как агломерат и гранулят, составляют в среднем 12-24 руб./кг (полиамид дороже остальных — 35-50 руб./кг, ПЭТФ — от 20 руб./кг). Дальнейшая переработка повышает прибавочную стоимость в зависимости от вида продукции на 30-200 %.

Инвестиционная привлекательность

По мнению большинства экспертов, вкладывать средства в переработку отходов полимеров выгодно, но только при опоре на государственную поддержку и законодательную базу, ориентированную на интересы переработчиков вторичного сырья.

На сегодня московский рынок складывается из 20-30 небольших компаний, занимающихся переработкой полимерных отходов в основном промышленного происхождения. Для рынка в целом характерны неформальные связи переработчиков с поставщиками, большая доля компаний, для которых этот бизнес является побочным, а также низкие объемы переработки (12-17 тыс. т в год). Можно предположить, что при наличии со стороны переработчиков стабильного спроса на такие отходы объемы предложений будут расти.

Надо заметить, что то количество полимерных отходов, которое реально идет сегодня на вторичную переработку, составляет весьма незначительную часть городских ТБО. И это при том, что спрос на полимеры и изделия из них постоянно повышается, а проблема утилизации отходов все больше беспокоит городские власти.

Сдерживающим фактором при строительстве новых перерабатывающих производств является неразвитость системы сбора отходов и отсутствие серьезных поставщиков. Совпадение интересов частного бизнеса и государства в этой сфере неизбежно должно привести к принятию законов, отвечающих интересам переработчиков вторсырья.

Настоящее и будущее

1. Ежегодный объем переработки ПЭТ в столице — 4-5 тыс. т в год. В планах московских властей стоит организация до 2003 г. системы селективного сбора ПЭТ-тары и создание двух производственных комплексов по ее переработке мощностью 3 тыс. т в год. В настоящее время завершается строительство двух частных производств по переработке ПЭТ совокупной мощностью б тыс. т ежегодно.

В ближайшие месяцы правительством Москвы должны быть приняты нормативные акты, регламентирующие деятельность переработчиков полимеров (точное их содержание пока не известно). Существующих и строящихся мощностей достаточно для обеспечения потребностей рынка. Рассматривается возможность государственной поддержки проектов ГУП «Промотходы» и фирмы «Интэко» (потенциальные мощности по переработке — 7-8 тыс. т в год).

2. Объем переработки ПП в Москве составляет 4-5 тыс. т в год, хотя ежегодно в городе выбрасывается порядка 50-60 тыс. т — в основном это пленка и мешки «биг-бэг». После переработки ПП в виде гранул добавляется в первичное сырье либо целиком идет на производство пластиковой посуды, хозяйственных пакетов и т. п.).

Отсутствие масштабных проектов по вторичному использованию этого полимера (как в случае с ПЭТ) открывает широкие возможности для инвестирования. Наиболее выгодной на данном этапе является переработка вторсырья в гранулят, поскольку в области производства товаров народного потребления конкуренция гораздо жестче.

3. Объем переработки ПЭ — также 4-5 тыс. т в год. Основной вид сырья — пленка, в том числе сельскохозяйственная. Всего же в городе ежегодно выбрасывается порядка 60-70 тыс. т полиэтиленового мусора. Как правило, предприятия, занимающиеся переработкой ПЭ, также имеют дело и с ПП. Одна из крупных компаний, через которую проходит порядка 2,5 тыс. т в год- «Пластполитен».

ПЭ отличает высокая стойкость к загрязнению. Однако существующий запрет на применение вторичного полимерного сырья при изготовлении пищевой упаковки ограничивает возможность сбыта.

Таким образом, наиболее рациональным на сегодня представляется строительство производственного комплекса по переработке отходов полиэтилена, полипропилена и ПЭТ в гранулят.

Это производство обязано включать в себя:

а) сортировку (требует специального обучения персонала для снижения доли другого вида полимера, что очень важно для качества продукта);

б) мойку (наибольшие потенциальные объемы сырья обычно не отсортированы и не отмыты);

в) сушку, дробление, агломерирование.

Экономически наиболее выгодно расположить этот комплекс в ближнем Подмосковье, поскольку цены на электричество, воду, аренду земли и промышленных площадей там существенно ниже, чем в столице (см. таблицу 2).

Вид полимера

Цена за чистые отходы, $/т

Цена на вторичный гранулят, $/т

Объем в ТБО

тыс. т в год

Таблица 2

Для эффективной работы подобного производства необходима поддержка государства. Возможно, имеет смысл частично пересмотреть существующие санитарные нормы переработки ТБО, а также обязать производителей полимерной продукции делать отчисления на переработку полимерных отходов. Кроме того, должны быть предприняты комплексные меры на уровне правительства Москвы и отдельных >ЖКХ, направленные на развитие системы селективного сбора и создание сети пунктов приема вторичного сырья.

Повышенный интерес государства к утилизации отходов уже отражен в бюджете: с 2002 по 2010 гг. на эти цели планируется израсходовать 519,2 млн. руб. из федерального бюджета. Бюджеты субъектов федерации предполагают выделить до 2010г. 11,4 млрд. руб. на реализацию программы «Отводы».

В 2001 г. Москва затратила на охрану окружающей среды 3,1 млрд. руб. На сегодняшний день стоимость уже реализуемых проектов по переработке бытовых отходов составляет 115,5 млн. руб.

Андрей Голиней,

Включайся в дискуссию
Читайте также
Сочные котлеты из свинины с рисом
Готовим макароны в мультиварке рецепты
Овощной кугель - безумно вкусно, быстро и легко!