Подпишись и читай
самые интересные
статьи первым!

Роль наследственности в патологии. Этиология и патогенез наследственных болезней. Патогенез наследственных заболеваний

Инициальным звеном патогенеза наследственных болезней являются мутации - внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генотипов не признает наличия специфических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации. Сторонниками существования специфических мутаций являются И.П. Дубинин, Е.Ф. Давыденкова, Н.П. Бочков.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации - в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутация или амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные иди точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные абберации, в свою очередь подразделяются на следующие виды:

делеция (нехватка) - вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующие им гены хромосомы. Если последовательность генов в хромосоме изобразить рядом цифр 1, 2, 3, 4, 5, 6, 7, 8 . 10000, то при делеции участка 3-6 хромосома укорачивается, а последовательность в ней генов меняется (1, 2, 7, 8 10000). Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция сегмента р1 - p-eг (короткого плеча) 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Нв - генов связано развитие одной из форм наследственных гемоглобинопатий - α-талассемии (см. раздел «Патофизиология системы крови»);

дупликация - вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. При принятой выше нумерации генов в хромосоме и дупликации на уровне 3-6 генов последовательность генов в такой хромосоме будет выглядеть следующим образом - 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8 - 10000. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко.

инверсия - вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180° - 1, 2, 6, 5, 4, 3, 7, 8 10000;

транслокация - вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами), миелоцитарный лейкоз - реципрокная транслокация между 9-й и 22-ой хромосомами (подробнее см. в разделе «Опухоли»).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с Х хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

Мутация - начальное звено патогенеза. Под мутацией (от лат. mutatio - изменение) в широком смысле слова понимают изменение структуры гена, хромосомы или их числа. В результате мутаций образуется аномальный ген с измененным кодом.
Мутации могут быть благоприятными и неблагоприятными (патогенными). Патогенные мутации подразделяются по причине возникновения, по «масштабу» изменений генетического материала, по механизму его изменения.
По причине возникновения мутации делятся на спонтанные и индуцированные.
По «масштабу» изменений генетического материала мутации делятся на генные («точечные»), хромосомные, геномные.
По механизму изменения генетического материала (гена или хромосомы) мутации делятся на делеции - выпадение какого либо участка гена или хромосомы; транслокации - перемещения участка; инверсии - поворота участка на 180 градусов и др.
Необходимым условием для возникновения мутации является недостаточная активность систем обнаружения и устранения повреждения ДНК, называемых системами репарации.

Мутации как источник наследственных болезней

Мутация - устойчивое наследуемое изменение дезоксирибонуклеино-вой кислоты (ДНК). Мутацию характеризует изменение первичной нуклеотидной последовательности ДНК.
Дети наследуют мутации в половых клетках родителей, то есть гаметические мутации.
Мутации могут быть масштабными изменениями структуры хромосом, которые затрагивают миллионы нуклеотидов. К таким мутациям относятся дупликация (удвоение), делеция (удаление, потеря) и транслокация (перемещение из одного участка хромосомы в другой или другую хромосому) фрагментов хромосом.

Мутации в одном или нескольких нуклеотидах называют точечными.
Делеция или вставка одного или двух нуклеотидов в кодирующей части гена вызывают мутацию со сдвигом рамки считывания. В результате информационная рибонуклеиновая кислота (мРНК) разбивается на кодоны таким образом, что каждый следующий кодон мутантного гена считывается неправильно. Такие мутации меняют аминокислотную последовательность белка, что может обусловить потерю протеином функциональных свойств или извращение физиологической активности белка. Кроме того, сдвиг рамки может вызвать патологическое кодирование мутантным геном белка с абортивной (неполной) структурой. Такое происходит вследствие преждевременного формирования в последовательности кодонов гена терминирующего кодона, который кодирует сигнал к прекращению транскрипции.
При мутации, не меняющей смысла, изменение ДНК не меняет информацию об аминокислотной последовательности и структуру белка, кодируемую геном.
Пример - замена кодона УУУ на кодон УУЦ.
Оба этих кодона кодируют одну и ту же аминокислоту фенилаланин.
При мутации, искажающей смысл, появление одного кодона вместо другого последовательности ДНК приводит к замене одной из аминокислот в аминокислотной последовательности белка. Пример - появление кодона УУА лейцина вместо кодона УУУ фенилаланина.
При мутации, не затрагивающей смысл, замена нуклеотида превращает один из кодонов в терминирующий кодон, кодирующий сигнал к прекращению транскрипции. Такая мутация может быть причиной экспрессии геном абортивной аминокислотной последовательности белка. Пример - появление терминирующего кодона УУА вместо кодона УАУ тирозина.

Сплайсинг - это процесс удаления интронных последовательностей инфор мационной РНК. Интрон - участок ДНК между двумя экзонами (кодирующим последовательностями), который транскрибируется, но не кодирует аминокис лотную последовательность белка.
Иногда замена нуклеотида в экзоне меняет сплайсинг транскрипта, или образуя скрытый сайт сплайсинга, или нарушая функцию нормального сайта. Сай сплайсинга - участок ДНК, кодирующий сигнал к сплайсингу. В результате об разования скрытого сайта сплайсинга образуется белок с аномальной аминокис лотной последовательностью, лишенный какого-либо своего фрагмента. При на рушении функции нормального сайта сплайсинг не происходит, аминокислотная последовательность начинает содержать продукт трансляции интрона.

Крупная деления захватывает часть гена, весь ген или группу соседних генов В результате кодирующая часть гена теряется в такой степени, что синтеза белк: не происходит. Крупная делеция может быть причиной болезни Дюшенна (про грессирующего бульбарного паралича). Болезнь встречается в позднем возраст как прогрессирующие атрофия и паралич мышц языка, губ, нёба, глотки и горта ни. Заболевание связано с атрофической дегенерацией нейронов, иннервирую щих данные мышцы.

Атрофическая дегенерация в данном случае вторична относительно патологи ческих изменений мышц. Причиной миопатии Дюшенна является дефект дистро фина, то есть белка с молекулярной массой 427 000, который находится на внут ренней поверхности сарколеммы. Ген дистрофина - один из самых крупны генов человека; его длина - 2 млн нуклеотидов. Делеция захватывает ген неравномерно, чаще в его начале и середине. Недостаточность дистрофина ослабляет сарколемму, вызывает разрыв мембраны и причинно-следственный ряд, который завершается некрозом мышечных волокон.

Делеция может также привести к слиянию кодирующих последовательносте двух генов и образованию химерного белка. Такие мутации являются весьма нередкими при неравномерном кроссинговере между парными повторами гомологичных генов. Напомним, что кроссинговер - это реципрокный обмен между двумя парными хромосомами в мейозе, приводящий к переносу кластеру генов от каждой хромосомы к ее гомологу. Известен «ген-химера» альдостеронсинтетазы и 11-В-гидролазы. Обычно альдостеронсинтетазу содержат клетки поверхностной клубочковой зоны коры надпочечников. В результате мутации альдостерон-синтетаза появляется в их средней пучковой зоне. Клетки пучковой зоны под влиянием кортикотропина начинают усиленно секретировать не только корти-зол, но и альдостерон. Это обуславливает альдостеронизм как причину артериальной гипертензии.

При определяемом полом наследовании болезни она проявляется специфическим фенотипом только у субъектов определенного пола. Следует отличать данный вид наследования моногенных заболеваний от наследования болезней, кодируемых генами Х-хромосом. Во многом данный вид наследственной патологии определяется действием половых гормонов и другими отличиями мужского и женского организмов. Например, облысение до полового созревания наследуется по аутосомно-доминантному типу и редко составляет фенотип мужчины.

Рецессивное наследование, связанное с Х-хромосомой

При данном виде наследования:
1) почти все больные являются мужчинами;
2) если носителем патогенного аллеля является мать, то она, как правило, здорова;
3) фенотип болезни может быть следствием новой мутации в сегменте Х-хро-мосомы матери, не имеющей гомолога в Y-хромосоме;
4) больной мужчина никогда не передает свою болезнь по наследству сыновьям;
5) все дочери больного мужчины являются носителями патогенного аллеля (переносчиками болезни);
6) женщина-переносчик болезни передает ее 50% процентам своих сыновей;
7) никто из дочерей женщины-переносчика не страдает от моногенной болезни.

Для того, чтобы при рецессивном, связанном с Х-хромосомой наследовании моногенной болезни родилась больная девочка, необходимы следующие условия:
1) больной отец;
2) мать гетерозиготная или гомозиготная по мутантному аллелю.

У мужчин все гены на сегменте Х-хромосоме, не имеющем гомолога на Y-хромосоме, экспрессируются в фенотипе дискретным наследственным признаком. Так как моногенные болезни, наследуемые в связи с Х-хромосомой и по рецессивному типу, - это редкие заболевания, то женщина с такой моногенной болезнью - это большая редкость. Примерно половина братьев матери пробанда больны моногенной болезнью, передаваемой в связи с Х-хромосомой и по рецессивному типу.

Мозаицизм - это присутствие в организме не менее двух клеточных линий, которые отличаются по генотипу и кариотипу, но происходят из одной зиготы.
Деление клеток в многоклеточном организме всегда сопровождается рядом мутаций (одно деление клетки - 4-5 соматических мутаций). Соматические мутации такого генеза обычно устраняются действием многих механизмов коррекции ошибок воспроизведения генетического материала при репликации. Можно считать, что в организме вследствие мутаций при репликации на ранних стадиях формирования многоклеточного организма всегда существует вероятность возникновения новых клеточных линий, отличных по строению своего генетического материала от исходной клеточной линии. При реализации такой возможности органы начинают отчасти составляться клетками новой линии, отличающейся от основной линии своим генетическим материалом.

Клетки новой линии разбросаны в различных органах в виде скоплений, островков. Если бы все регуляторные и исполнительные аппараты состояли из клеток новой линии, то организм был бы обречен на гибель. Например, при синдроме Мак-Куна-Альбрихта скопления клеток новой линии мозаично составляют костную ткань, многие эндокринные железы формируют пигментные пятна кожи, обуславливают аномалии сердца и печени.

Если мутация, лежащая в основе мозаицизма, характеризует генотип гамет, то наследственная патология у детей больного с мозаицизмом всегда тяжелее наследственных аномалий без мозаицизма. Дело в том, что все клетки организма больного ребенка содержат болезнетворный аллель. Иными словами, весь многоклеточный организм больного состоит из клеток одной линии с аномальным генотипом. Иногда мозаицизм обуславливает внутриутробную гибель плода. Иногда репликация клеток нормальных линий компенсирует последствия мозаицизма, и рождается ребенок с патологией, обусловленной существованием в организме клеток патологических линий.

Импринтинг (запечатление) - это различие в экспрессии генетического материала в зависимости от того, кто передал его потомству, отец или мать. Выделяют тканеспецифичный импринтинг и импринтинг, зависящий от времени развития (периода онтогенеза). В одних тканях при тканеспецифичном импринтинге происходит экспрессия двух родительских аллелей, а в других только одной альтернативной формы гена.
В основе синдрома Прадера-Вилли лежит делеция части хромосомы 15. На данной хромосоме локализованы в тесной близости друг к другу определенные гены, которые экспрессируются только при условии, если их наследуют от матери или от отца. В зависимости от того, кто передает хромосому, подвергшуюся делеции, вследствие импринтинга развиваются разные фенотипы наследственных синдромов.
На нескольких хромосомах есть участки, которые содержат гены, экспрессия которых зависит от того, кто передал их по наследству, отец или мать. Некоторые из таких генов определяют процессы роста тела и формирование поведенческих навыков в ранние периоды онтогенеза. Другие гены такого рода вовлечены в канцерогенез. Импринтинг следует заподозрить в том случае, если наследственная болезнь возникает в ряду поколений через раз.

Дисциплина: «Патофизиология»
Автор: Герасимова Людмила Ивановна,
к.м.н., доцент
:
Роль наследственности
в патологии
Этиология и патогенез
наследственных болезней

Ключевые понятия темы

Наследственность
Генотип, фенотип
Мутации, мутагенные факторы
Наследственные болезни
2007
аутосомно-доминантные,
аутосомно-рецессивные,
сцепленные с полом
Хромосомные болезни
Врождённые болезни, фенокопии
Диагностика, лечение и профилактика
наследственных заболеваний человека
Copyright L. Gerasimova
2

Происхождение болезней

Врождённые
Болезни, проявляющиеся, в основном,
при рождении
Наследственные
Приобретённые
Болезни, возникающие
в постнатальном периоде
Ненаследственные
Связаны с перестройкой Являются результатом
наследственного
воздействий патогенных
материала
факторов на организм в
Генно-молекулярные
антенатальный
болезни
и перинатальный
Хромосомные болезни
периоды развития
(врожденный сифилис,
токсоплазмоз, СПИД,
гемолитическая болезнь
новорожденного и др.)
2007
Copyright L. Gerasimova
3

Наследственность – свойство организмов сохранять и обеспечивать передачу наследственных признаков потомкам, а также

программировать особенности их
индивидуального развития в конкретных условиях среды.
Нормальные и патологические признаки организма являются
результатом взаимодействия наследственных (внутренних) и
средовых (внешних) факторов.
2007
Copyright L. Gerasimova
4

Генотип – совокупность всех генов в организме

стабильность
изменчивость
Основа стабильности генотипа:
дублированность (диплоидность) его структурных
элементов;
доминирование нормального аллеля над
патологическим рецессивным геном, благодаря чему
огромное количество заболеваний, передающихся по
рецессивному типу, не проявляется в гетерозиготном
организме;
система оперона, обеспечивающая репрессию
(блокирование) патологического гена (например,
онкогена);
механизмы репарации ДНК, позволяющие с помощью
набора ферментов (инсертаза, экзо- и эндонуклеаза,
ДНК-полимераза, лигаза) быстро исправлять
возникающие в ней повреждения.
2007
Copyright L. Gerasimova
5

Изменчивость
Генотипическая
(наследуемая)
Фенотипическая
(ненаследуемая)
Фенокопии
Соматическая
(в соматических клетках)
Наследуемый признак – результат
мутаций – устойчивое изменение
генетического материала
Результат случайной
перекомбинации аллелей
независимое расхождение
хромосом при мейозе
кроссинговер
случайная встреча гамет
2007
Copyright L. Gerasimova
Генеративная
(в половых клетках)
Мутационная
Комбинативная
6

Мутация - это главная причина возникновения наследственного заболевания.

Мутации – количественные или
качественные изменения генотипа,
передающихся в процессе репликации
генома от клетки к клетке,
из поколения в поколение.
2007
Copyright L. Gerasimova
7

Причины мутаций

Спонтанные мутации
Индуцированные мутации
Мутагенные факторы – мутагены
Экзогенные
Эндогенные
2007
Ионизирующие излучения, УФЛ, электромагнитные поля,
температурный фактор
Химические вещества (окислители: нитраты, нитриты,
активные формы кислорода; производные фенола,
алкилирующие вещества, пестициды, ПАУ …)
Вирусы
и др.
Антимутагенные факторы
Возраст родителей
Хронический стресс
Гормональные нарушения
Вит. С, А, Е, фолиевая кислота
Антиоксиданты (ионол, соли селена …)
Ферменты (пероксидаза, НАДФоксидаза, глутатион-пероксидаза,
каталаза...)
Аминокислоты (аргинин, гистидин,
метионин цистамин …)
Copyright L. Gerasimova
8

Генные мутации
изменение структуры гена –
выпадение, замена или вставка
новых нуклеотидов в цепи ДНК
«точечные» мутации
изменение рамки считывания ДНК
2007
Copyright L. Gerasimova
9

Делеция
Транслокация
Хромосомные
мутации
Структурные перестройки хромосом:
делеции,
дупликации,
транслокации,
инверсии.
Делеция короткого плеча
хромосомы 5 – с-м кошачего крика
Трисомия короткого плеча хромосомы 9
– микроцефалия, умственная
отсталость, ВПР
Инверсия
Транслокация Робертсона
Ломкая Х-хромосома
с-м Мартина-Белла
2007
Copyright L. Gerasimova
10

Геномные мутации
изменение числа хромосом
Результат комбинативной изменчивости
Нарушение мейоза
Неправильное расхождение хромосом
в мейозе
полиплоидии -
кратное увеличение полного набора хромосом
Триплоидия
Тетраплоидия
У человека – несовместимы с жизнью –
спонтанный аборт.
анеуплоидии -
изменение числа хромосом в одной или
нескольких парах
Моносомия
С-м Шерешевского-Тернера (ХО)
Трисомия
2007
С-м Дауна – 21 пара
С-м Эдвардса – 18 пара
С-м Патау – 13 пара
Трисомия Х
С-м Клайнфельтера – XXY
Copyright L. Gerasimova
11

Общий патогенез генно-молекулярных болезней

Ген
Локализация
гена
Белок
(структурный б.
или фермент)
Признак
Аутосомы
Половые хромосомы
(Х-хромосома)
доминантный
Аутосомно-доминантные
Сцепленные с Х-хромосомой
доминантные
рецессивный
Аутосомно-рецессивные
Сцепленные с Х-хромосомой
рецессивные
Тип
наследования
2007
Copyright L. Gerasimova
12

Ген локализован в аутосоме
Генотип: гомо- и гетерозигота
Не зависят от пола
«Вертикальный» характер распределения болезни
Здоровые лица не передают заболевания
последующим поколениям
Не ограничивают репродуктивные возможности
Родители
Возможный
2007
генотип детей
Copyright L. Gerasimova
Больные – гетерозиготы
13

Аутосомно-доминантные болезни

Ахондроплазия
Б-нь Геттингтона
Врожденная телеангиоэктазия (с-м Ослера-Вебера-Рандю)
Дефицит антитромбина
Наследственный сфероцитоз
Нейрофиброматоз
Непереносимость лактозы
Несовершенный остеогенез
Поликистоз почек
Прогрессирующая оссифицирующая фибродисплазия
Семейная гиперхолестеринемия
Семейный полипоз кишечника
С-м Марфана
С-м Шарко-Мари-Тутта
Челюстно-лицевой дизостоз
2007
Copyright L. Gerasimova
Арахнодактилия Брахидактилия Полидактилия Синдактилия
14

Ген локализован в аутосоме
Генотип: гомозигота
Не зависят от пола
«Горизонтальный» характер распределения
болезни
Здоровые лица (гетерозиготы) передают
заболевания последующим поколениям
Сокращают продолжительность жизни,
ограничивают репродуктивные
возможности
«носитель»
- отец
Гомозиготы – больные
Гетерозиготы – носители
2007
Copyright L. Gerasimova
15

Аутосомно-рецессивные болезни
Адрено-генитальный синдром
Альбинизм
Анемия Фанкони
Атаксия Фредериксена
Болезнь Вильсона-Коновалова
Галактоземия
Гемохроматоз
Гликигенозы
Гомоцистинурия
Дефицит альфа-1-антитрипсина

(гемолитическая анемия)
Муковисцидоз (кистозный фиброз)
Мукополисахаридозы
Пигментная ксеродерма
Семейная средиземноморская лихорадка
Синдром Ротора (желтуха)
С-м Дабина-Джонсона
Спинальные мышечные атрофии
Талассемия
Фенилкетонурия
2007
Муковисцидоз
Дефект CFTR → повышенная вязкость
секрета → обтурация протоков желёз
→ кистозно-фиброзное перерождение
Copyright L. Gerasimova
16

Аутосомно-рецессивные болезни

Фенилкетонурия
(фенилпировироградная олигофрения)
Фенилаланин
Накопление
фенилпировиноградной
кислоты → интоксикация
Нарушение образования
катехоламинов →
снижение функции ЦНС →
олигофрения
Волосы новорождённого
с фенилкетонурией
2007
Copyright L. Gerasimova
Нарушение синтеза
меланина →
депигментация
17

Х-сцепленные болезни

Агаммаглобулинемия
Адренолейкодистрофия
Гемофилия
Дальтонизм
Дефицит глюкозо-6-фосфатдегидрогеназы
(гемолитическая анемия)
Ихтиоз
Ломкая Х-хромосома
Мышечная дистрофия Беккера
Мышечная дистрофия Дюшенна
Нечувствительность к андрогенам
С-м Вискотта-Олдрича
2007
Copyright L. Gerasimova
здоровый
больной
носитель
18

Хромосомные болезни

Возраст
матери
15 - 19
20 - 24
25 - 29
30 - 34
35 - 39
40 - 44
45 - 49
1:1600
1:1400
1:1100
1:700
1:240
1:70
1:20
Болезнь Дауна
2007
Трисомия
13
1:17000
1:33000
1:14000
1:25000
1:11000
1:20000
1:7100
1:14000
1:2400
1:4800
1:700
1:1600
1:650
1:1500
Широкое лицо
Увеличенный язык
Эпикант
Раскосые глаза
Плоская переносица
Короткая, широкая ладонь,
с единственной поперечной складкой
Мизинец укорочен и загнут внутрь
Отставание физического развития
Умственная отсталость
Пороки сердца, ЖКТ, почек
Иммунодефицит
С-м Дауна Трисомия 18
Copyright L. Gerasimova
поперечная
складка
19

Хромосомные болезни
Синдром Клайнфельтера (47 XXY, 48 XXXY)
Высокий рост
Телосложение по женскому
типу
Гипоплазия яичек
Евнухоидизм
Нарушение сперматогенеза
Гинекомастия
Склонность к ожирению
Психические нарушения
Умственная отсталость
2007
Copyright L. Gerasimova
20

Хромосомные болезни
Синдром Шерешевского-Тернера (45 XO)
Низкий рост, нарушение
окостенения скелета
(кифоз, сколиоз…)
Дисгенезия гонад
(недоразвитие вторичных
половых признаков,
бесплодие)
Внешний вид старше паспортного возраста
Крыловидная складка на шее
Низкий рост волос
Деформированные ушные раковины
Широкое расположение сосков
Множественные родимые пятна на коже
Умственная отсталость (редко)
2007
Copyright L. Gerasimova
21

Врождённые болезни

Фетальный
алкогольный синдром
Талидомидовый
синдром
2007
Copyright L. Gerasimova
22

Диагностика врождённых и наследственных заболеваний

Клинико-синдромологический
метод
Генеалогический метод
Цито-генетический метод
Кариотип
половой хроматин
(количество Х-хромосом)
Биохимический метод
Молекулярная диагностика
(анализ ДНК)
2007
Copyright L. Gerasimova
23

Профилактика врождённых и наследственных заболеваний

2007
Исключение действия мутагенов
(в т.ч. лекарственных)
Медико-генетическое консультирование
– определение риска
Пренатальная диагностика
УЗИ
Биопсия хориона
Амниоцентез
α-фетопротеин

Copyright L. Gerasimova
24

Лечение врождённых и наследственных
заболеваний
Этиотропное – генная инженерия
Патогенетическое
Заместительная терапия
гормоны при их недостатке
(инсулин, АДГ…)
криоглобулин при гемофилии
Ig при агаммаглобулинемии

Исключение веществ при нарушении
их метаболизма
(фенилаланина при ФКУ, лактозы при
непереносимости лактозы)
Симптоматическое
2007
Copyright L. Gerasimova

Инициальным звеном патогенеза наследственных болезней являются мутации - внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генетиков не признает наличия специ-фических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации - в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутация или амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные или точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные аберрации, в свою очередь, подразделяются на следующие виды:

делеция (нехватка) - вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующие им гены хромосомы. Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция короткого плеча 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Нb - генов связано развитие одной из форм наследственных гемоглобинопатии – α-талассемии;

дупликация - вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко;

инверсия - вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180°.

транслокация - вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с X-хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

В основе развития гепато-церебральной дистрофии лежит дефицит белка – церрулоплазмина, что сопряжено с увеличением всасывания, нарушением метаболизма и выведения меди, избыточным ее накоплением в тканях. Токсическое действие меди сказывается особенно сильно на состоянии и функции нервной системы и печени (процесс, который завершается циррозом). Первые симптомы болезни проявляются в возрасте 10-20 лет, быстро прогрессируют и заканчиваются смертельным исходом. Наследование аутосомно-рецессивное.

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тканях и нарушением катализируемых им процессов. В качестве примеров развития по такому пути наследственных форм патологии можно назвать ряд болезней аминокислотного, углеводного обмена и др. Фенилпировиноградная олигофрения, например, связана с нарушением синтеза фенила-ланингидроксилазы, катализирующей в норме превращение потребляемого с пищей фенилаланина в тирозин. Дефицит фермента ведет к избыточному содержанию в крови фенилаланина, многообразным изменениям в обмене тирозина, продукции значительных количеств фенилпировиноградной кислоты, повреждению мозга с развитием микроцефалии и умственной отсталости. Заболевание наследуется аутосомно-рецессивно. Диагноз его может быть поставлен в первые дни после рождения ребенка, еще до проявления выраженных симптомов болезни по обнаружению в моче фенилпировиноградной кислоты и фенилаланинемии. Ранняя диагностика и своевременно начатое лечение (диета с низким содержанием фенилаланина) позволяют избежать развития болезни, наиболее тяжелого ее проявления - умственной неполноценности.

Отсутствие оксидазы гомогентизиновой кислоты, участвующей в обмене тирозина, ведет к накоплению промежуточного продукта тирозинового обмена – гомогентизиновой кислоты, которая не окисляется в малеилацетоуксусную кислоту, а откладывается в суставах, хрящах, соединительной ткани, вызывая с возрастом (обычно уже после 40 лет) развитие тяжелых артритов. Диагноз и в этом случае может быть поставлен очень рано: на воздухе моча таких детей из-за наличия в ней гомогентизиновой кислоты чернеет. Наследуется аутосомно-рецессивно.

3. Нередко в результате мутации формируется ген с патологическим кодом, вследствие чего синтезируется аномальная РНК и аномальный белок с измененными свойствами. Наиболее ярким примером патологии такого типа является серповидно-клеточная анемия, при которой в 6-ом положении (b-цепи гемоглобина глутаминовая аминокислота заменена на валин, образуется нестабильный HbS. В восстановленном состоянии растворимость его резко уменьшается, повышается его способность к полимеризации. Образуются кристаллы, нарушающие форму эритроцитов, которые легко гемолизируются, особенно в условиях гипоксии и ацидоза, приводя к развитию анемии. Наследование аутосомно-рецессивное или полудоминантное.

Важным условием для возникновения и реализации действия мутаций является несостоятельность системы репарации ДНК, что может быть детерминировано генетически или развиться в процессе жизни, под влиянием неблагоприятных факторов внешней или внутренней среды организма.

Так, в генотипе здоровых людей есть ген с кодом программы синтеза фермента экзонуклеазы, обеспечивающей «вырезание» пиримидиновых димеров, которые образуются под влиянием ультрафиолетового излучения. Аномалия данного гена, выражающаяся в утрате кода программы синтеза экзонуклеазы, повышает чувствительность кожи к солнечному свету. Под влиянием даже непродолжительной инсоляции возникает сухость кожи, хроническое ее воспаление, патологическая пигментация, позже появляются новообразования, подвергающиеся злокачественному перерождению. Две трети больных умирают в возрасте до 15 лет. Заболевание - пигментная ксеродерма - наследуется аутосомно-рецессивно.

Функциональные потенции системы репарации ДНК ослабевают с возрастом.

Определенная роль в патогенезе наследственных форм патологии может принадлежать, по-видимому, стойким нарушениям регуляции генной активности, что, как уже отмечалось, может быть одной из возможных причин проявления наследственной болезни лишь спустя много лет после рождения.

Итак, основные механизмы развития наследственной патологии связаны с:

1) мутациями, в результате которых возникают:

а) выпадение нормальной наследственной информации;

б) увеличение объема нормальной наследственной информации;

в) замена нормальной наследственной информации на патологическую;

2. нарушением репарации поврежденной ДНК

3. стойкими изменениями регуляции генной активности.

Хромосомные болезни

Особую группу заболеваний, связанных со структурными изменениями в генетическом материале, составляют хромосомные болезни, условно относящиеся к категории наследственных. Дело в том, что в подавляющем большинстве случаев хромосомные болезни не передаются потомству, поскольку их носители чаще всего бывают бесплодными.

Хромосомные болезни обусловлены геномными или хромосомными мутациями, произошедшими в гамете одного из родителей, или в зиготе, сформированной гаметами с нормальным набором хромосом. В первом случае все клетки будущего ребенка будут содержать аномальный хромосомный набор (полная форма хромосомной болезни), во втором - развивается мозаичный организм, лишь часть клеток которого с аномальным набором хромосом (мозаичная форма болезни). Степень выраженности патологических признаков при мозаичной форме болезни слабее, нежели при полной.

Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбриогенеза, вследствие чего болезнь всегда характеризуется множественными пороками развития.

Частота хромосомных нарушений достаточно высока: из каждой 1000 живорожденных младенцев 3-4 имеют хромосомные болезни, у мертворожденных детей они составляют 6%; дисбалансом хромосом обусловлено около 40% спонтанных абортов (Н.П.Бочков, 1984). Дисбаланс, затрагивающий все пары хромосом, вызывает настолько значительные нарушения в организме, что они, как правило, оказываются несовместимыми с жизнью уже на ранних или более поздних этапах эмбриогенеза. Чаще встречаются изменения числа или структуры отдельных хромосом. Недостаток генетического материала вызывает более значительные дефекты, чем избыток. Полные моносомии, например, по аутосомам практически не обнаружены. По-видимому такой дисбаланс вызывает летальный исход уже в гаметогенезе или на стадии зиготы и ранней бластулы.

Основа для развития хромосомных болезней, связанных с изменением числа хромосом, формируется в гаметогенезе, во время первого или второго мейотических делений или в период дробления оплодотворенной яйцеклетки, чаще всего в результате нерасхождения хромосом. При оплодотворении аномальной яйцеклетки сперматозоидом с нормальным набором хромосом или нормальной яйцеклетки аномальным сперматозоидом, реже при сочетании двух гамет, содержащих измененное число хромосом, создаются предпосылки для развития хромосомной болезни.

Вероятность такого рода нарушений, а, следовательно, и рождения детей с хромосомными болезнями, нарастает с возрастом родителей, особенно матери.

Самой частой хромосомной болезнью является болезнь Дауна. Кариотип больных в 94% состоит из 47 хромосом за счет трисомии по 21 хромосоме. Примерно в 4% случаев отмечается транслокация лишней 21-ой хромосомы в 14-ю или 22-ю, общее число хромосом равно 46. Болезнь характеризуется резкой задержкой и нарушением физического и психического развития ребенка. Такие дети низкорослы, поздно начинают ходить, говорить. Бросаются в глаза внешний вид ребенка (характерная форма головы со скошенным затылком, широкая, глубоко запавшая переносица, монголоидный разрез глаз, открытый рот, неправильный рост зубов, макроглоссия, мышечная гипотония с разболтанностью суставов, особенно мизинца, брахидактилия, поперечная складка на ладони и др.) и выраженная умственная отсталость, иногда до полной идиотии. Нарушения отмечаются во всех системах и органах. Особенно часты пороки развития нервной (в 67%), сердечно-сосудистой (64,7%) систем. Как правило, изменены реакции гуморального и клеточного иммунитета, страдает система репарации поврежденной ДНК. С этим связана повышенная восприимчивость к инфекции, более высокий процент развития злокачественных новообразований, в особенности лейкозов. В большинстве случаев больные бесплодны. Однако, встречаются случаи рождения больной женщиной детей, часть из них страдают той же болезнью.

Второй по частоте (1:5000-7000 родов) патологией, обусловленной изменением числа аутосом, является синдром Патау (трисомия 13). Синдром характеризуется тяжелыми пороками головного мозга и лица (дефекты строения костей мозгового и лицевого черепа, головного мозга, глаз; микроцефалия, расщелина верхней губы и неба), полидактилией (чаще - гексодактилия), дефектами перегородок сердца, незавершенным поворотом кишечника, поликистозом почек, пороками развития других органов. 90% детей, родившихся с этой патологией, погибают в течение 1-го года жизни.

Третье место (1:7000 рождений) среди полисомии аутосом занимает трисомия 18 (синдром Эдвардса). Основные клинические проявления болезни: многочисленные пороки костной системы (патология строения лицевой части черепа: микрогнатия, эпикант, птоз, гипертелоризм), сердечно-сосудистой (дефекты межжелудочковой перегородки, пороки клапанов легочной артерии, аорты), гипоплазия ногтей, подковообразная почка, крипторхизм у мальчиков. 90% больных погибает на первом году жизни.

Намного чаще встречаются хромосомные болезни, связанные с нерасхождением половых хромосом. Известные варианты гоносомных полисомий приведены в таблице 6.

Таблица 6

Типы гоносомных полисомий, обнаруженных у новорожденных

(по Н.П. Бочкову, А.Ф. Захарову, В.И. Иванову; 1984)

Как следует из таблицы, подавляющее число полисомий по половым хромосомам приходится на трисомии XXX, XXY, XYY.

При трисомии по Х-хромосоме («сверхженщина») клинические признаки болезни нередко отсутствуют или минимальны. Болезнь диагностируется по обнаружению вместо одного двух телец Барра и по кариотипу 47,ХХХ. В других случаях у больных отмечается гипоплазия яичников, матки, бесплодие, различные степени умственной неполноценности. Увеличение в кариотипе числа Х-хромосом увеличивает проявление умственной отсталости. Такие женщины чаще, чем в общей популяции страдают шизофренией.

Варианты полисомий с участием Y-хромосом более многочислены и многообразны. Наиболее частый из них - синдром Клайнфельтера - обусловлен увеличением общего числа хромосом до 47 за счет Х-хромосомы. Больной мужчина (наличие Y-хромосомы доминирует при любом количестве X-хромосом) отличается высоким ростом, женским типом строения скелета, инертностью и умственной отсталостью. Генетический дисбаланс обычно начинает проявляться в период полового созревания недоразвитием мужских половых признаков. Яички уменьшены в размерах, наблюдается аспермия или олигоспермия, часто гинекомастия. Надежным диагностическим признаком синдрома служит обнаружение в клетках мужского организма полового хрома­тина. Синдром сверхклайнфельтера (XXXY, два тельца Барра) характеризуется большей выраженностью названных признаков, умственная несостоятельность достигает степени идиотии.

Обладатель кариотипа 47, XYY - «супермужчина» отличается импуль­сивным поведением с выраженными элементами агрессивности. Большое число таких индивидов выявляется среди заключенных.

Гоносомная моносомия встречается намного реже, чем полисомия, и ограничивается лишь моносомией X (синдром Шерешевского-Тернера). Кариотип состоит из 45 хромосом, половой хроматин отсутствует. Больные (женщины) отличаются низким ростом, короткой шеей, шейными боковыми кожными складками. Характерны лимфатический отек стоп, слабое развитие половых признаков, отсутствие гонад, гипоплазия матки и фалопиевых труб, первичная аменорея. Такие женщины бесплодны. Умственная способность, как правило, не страдает.

Случаев моносомии V не выявлено. По-видимому, отсутствие Х-хро-мосомы несовместимо с жизнью и особи типа «OV» гибнут на ранних этапах эмбриогенеза.

Хромосомные болезни, обусловленные структурными изменениями хромосом, встречаются реже и, как правило, приводят к более тяжелым последствиям: спонтанным абортам, недоношенности, мертворождению, ранней детской смертности.

Наследственность – свойство клеток и организмов передавать свои анатомо-физиологические признаки (особенности) потомкам. Процесс передачи этих признаков – наследование. Передача осуществляется с помощью генов – материальных единиц наследственности. От родителей потомкам передаются не признаки в готовом виде, и информация (код) о синтезе белка (фермента), детерминирующего этот признак. Гены – участки молекулы ДНК. Они состоят из кодонов. Каждый кодон представляет собой группу из 3 нуклеидов и, ≥, явл-ся нуклеотидным триплетом. Каждый кодон кодирует инфор-ию о стр-ре аминокислот и местоположение ее в белковой молекуле. Гены собираются в блоки, а последние в ДНК-нити, которые образуют хромосому . Общее число хромосом у человека в соматической кл-ке 46, в гамете – 23.

Причины наследственных болезней : Стартовое звено патогенеза наследственных заболеваний - мутации - нарушения структуры генов, хромосом или изменение их числа. В зависимости от уровня организации генетического материала (ген, хромосома, геном) говорят о мутациях генных, хромосомных и геномных.

Причинами мутаций могут быть различные факторы. Их обозначают как мутагены, а изменения, приводящие к возникновению мутаций, называют мутационным процессом. В результате мутационного процесса возникают разные виды мутаций. Изменения генетического материала разнообразны (делеции, вставки и т.д.), что позволяет подразделить мутации по механизму дефекта генетического материала (типы мутаций).

Мутагены (равно и вызываемые ими мутации) классифицируют по происхождению (источнику) на эндогенные и экзогенные , а по природе на физические, химические и биологические .

1)Экзогенные мутагены. Их большинство, к ним относятся различные и многочисленные факторы внешней среды (радиационное излучение, алкилирующие агенты, окислители, многие вирусы).

2)Эндогенные мутагены образуются в процессе жизнедеятельности организма (мутации могут возникать под влиянием свободных радикалов, продуктов липопероксидации).

1)Физические мутагены - ионизирующее излучение и температурный фактор.

2)Химические мутагены - самая многочисленная группа мутагенов. К химическим мутагенам относятся: сильные окислители или восстановители (нитраты, нитриты, активные формы кислорода); алкилирующие агенты (йодацетамид); пестициды (гербициды, фунгициды); некоторые пищевые добавки (ароматические углеводороды, цикламаты); продукты переработки нефти; органические растворители; JIC (цитостатики, содержащие ртуть средства, иммунодеп-рессанты); другие химические соединения.

3)Биологические мутагены: вирусы (например, кори, краснухи, гриппа); Аг некоторых микроорганизмов.

В результате мутаций образуется аномальный ген с измененным кодом. Реализация действия аномального гена – завершающее звено патогенеза наследственных болезней. Различают несколько путей реализации аномального гена, образовавшегося вследствие мутаций:

1-й путь реализации действия аномального гена: аномальный ген, утративший код нормальной программы синтеза структурного или функционально важного белка > прекращение синтеза иРНК > прекращение синтеза белка > нарушение ж/д > наследственная болезнь (гипоальбуминемия, гемофилия А);

2-й путь реализации действия аномального гена: аномальный ген, утративший код нормальной программы синтеза фермента > прекращение синтеза иРНК > прекращение синтеза белка-фермента > нарушение ж/д > наследственная болезнь (энзимопатическая метгемоглобинемия, гипотиреоз, альбинизм, алкаптонурия);

3-й путь реализации действия аномального гена: аномальный ген с патологическим кодом > синтез патологической иРНК > синтез патологического белка > нарушение ж/д > наследственная болезнь (серповидно - клеточная анемия).

Включайся в дискуссию
Читайте также
Урок по теме электромагнитное поле электромагнитные волны
Варианты решения уравнений с параметром и модулем
Функции и графики Их графики