Подпишись и читай
самые интересные
статьи первым!

Ракетные двигатели. Ракетное топливо (РТ)

Недавно случившаяся авария ракеты« Днепр», космического носителя, переделанного из военной ракеты Р-36М УТТХ, снова вызвала интерес к ракетному топливу.

V-2 («Фау-2») легла в основу всей послевоенной ракетной техники, и американской, и советской

Запуск 900 ракет «Фау-2» требовал 12 тыс. т жидкого кислорода, 4 тыс. тонн этилового спирта, 2 тыс. т метанола, 500 т перекиси водорода и 1,5 тыс. т взрывчатки

Вместо спирта, который наряду с жидким кислородом использовал Вернер фон Браун, Королев для своих первых ракет выбрал керосин

Ни бензин, не керосин, ни дизельное топливо не воспламеняются сами при взаимодействии с кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу

Ракета S-4B, третья ступень еще одного детища Вернера фон Брауна — самой мощной американской ракеты-носителя Saturn V. В активе последней — 13 успешных запусков (с 1967 по 1973 год). Именно с ее помощью человек ступил на Луну

Жидкостные ракетные двигатели (ЖРД) — очень совершенные машины, и их характеристики на 90%, а то и больше, определяются примененным топливом. Эффективность же топлива зависит от состава и запасенной энергии. Идеальное топливо должно состоять из легких элементов — из самого начала таблицы Менделеева, дающих максимальную энергию при окислении. Но это не все требования к топливу — еще оно должно быть совместимым с конструкционными материалами, стабильным при хранении и по возможности недорогим. Но ракета — это не только двигатель, но еще и баки ограниченного объема: чтобы взять на борт больше топлива, его плотность должна быть повыше. Кроме топлива ракета везет с собой и окислитель.

Идеальный окислитель с точки зрения химии — жидкий кислород. Но одной химией ракета не исчерпывается, это конструкция, в которой все взаимоувязано. Вернер фон Браун выбрал для Фау-2 спирт и жидкий кислород, и дальность ракеты получилась 270 км. Но если бы ее двигатель работал на азотной кислоте и дизельном топливе, то дальность увеличилась бы на четверть, потому что такого топлива в те же баки помещается на две тонны больше!

Ракетное топливо — кладовая химической энергии в компактном виде. Топливо тем лучше, чем больше энергии запасает. Поэтому вещества, хорошие для ракетного топлива, всегда чрезвычайно химически активны, непрерывно пытаются высвободить скрытую энергию, разъедая, сжигая и разрушая все вокруг. Все ракетные окислители либо взрывоопасны, либо ядовиты, либо нестойки. Жидкий кислород — единственное исключение, и то только потому, что природа приучилась к 20% свободного кислорода в атмосфере. Но даже жидкий кислород требует уважения.

Хранить вечно

Баллистические ракеты Р-1, Р-2 и Р-5, созданные под руководством Сергея Королева, не только показали перспективность этого вида оружия, но и дали понять, что жидкий кислород не очень подходит для боевых ракет. Несмотря на то, что Р-5М была первой ракетой с ядерной боеголовкой, а в 1955 году даже было произведено реальное испытание с подрывом ядерного заряда, военных не устраивало, что ракету нужно заправлять непосредственно перед стартом. Требовалась замена жидкому кислороду, замена полноценная, такая, чтоб и в сибирские морозы не замерзала, и в каракумскую жару не выкипала: то есть с диапазоном температур от -55 градусов до +55 градусов Цельсия. Правда, с кипением в баках проблем не ожидалось, так как давление в баке повышенное, а при повышенном давлении и температура кипения больше. Но кислород ни при каком давлении не будет жидким при температуре выше критической, то есть -113 градусов Цельсия. А таких морозов даже в Антарктиде не бывает.

Азотная кислота HNO3 — другой очевидный окислитель для ЖРД, и ее использование в ракетной технике шло параллельно с жидким кислородом. Соли азотной кислоты — нитраты, особенно калийная селитра — уже много веков использовались как окислитель самого первого ракетного топлива — черного пороха.

Молекула азотной кислоты содержит как балласт лишь один атом азота да «половинку» молекулы воды, а два с половиной атома кислорода могут быть использованы для окисления горючего. Но азотная кислота — очень «хитрое» вещество, настолько странное, что непрерывно реагирует само с собой — атомы водорода от одной молекулы кислоты отщепляются и прицепляются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Из-за этого в азотной кислоте обязательно образуются разного рода примеси.

Кроме того, азотная кислота очевидно не удовлетворяет требованиям совместимости с конструкционными материалами — под нее специально приходится подбирать металл для баков, труб, камер ЖРД. Тем не менее «азотка» стала популярным окислителем еще в 1930-е годы — она дешева, производится в больших количествах, достаточно стабильна, чтобы ею можно было охлаждать камеру двигателя, пожаро- и взрывобезопасна. Плотность ее заметно больше, чем у жидкого кислорода, но главное ее достоинство по сравнению с жидким кислородом состоит в том, что она не выкипает, не требует теплоизоляции, может неограниченно долго храниться в подходящей таре. Только где ее взять, подходящую тару?

Все 1930-е и 1940-е годы прошли под знаменем поиска подходящих емкостей для азотной кислоты. Но даже самые стойкие сорта нержавеющей стали медленно разрушались концентрированной азоткой, в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов, который, конечно же, нельзя подавать в ракетный двигатель — он мгновенно забьется и взорвется.

Для уменьшения коррозионной активности азотной кислоты в нее стали добавлять различные вещества, пытаясь, зачастую методом проб и ошибок, найти комбинацию, которая бы, с одной стороны, не испортила окислитель, с другой — сделала его более удобным в использовании. Но удачная добавка была найдена только в конце 1950-х американскими химиками — оказалось, что всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз! Советские химики задержались с этим открытием лет на десять-пятнадцать.

Секретные присадки

Тем не менее первый в СССР ракетный самолет-перехватчик БИ-1 использовал именно азотную кислоту и керосин. Баки и трубы пришлось делать из монель-металла — сплава никеля и меди. Этот сплав получался «естественным» образом из некоторых полиметаллических руд, поэтому был популярным конструкционным материалом второй трети ХХ века. О его внешнем виде можно судить по металлическим рублям — они сделаны из почти «ракетного» сплава. Во время войны не хватало, однако, не только меди с никелем, но и нержавеющей стали. Приходилось использовать обычную, покрытую для защиты хромом. Но тонкий слой быстро проедался кислотой, поэтому после каждого запуска двигателя остатки топливной смеси приходилось скребками удалять из камеры сгорания — техники поневоле вдыхали ядовитые испарения. Один из пионеров ракетной техники Борис Черток однажды едва не погиб при взрыве двигателя для БИ-1 на стенде, этот эпизод он описал в своей замечательной книге «Ракеты и люди».

Помимо добавок, снижающих агрессивность азотной кислоты, в нее пытались добавлять разные вещества, чтобы повысить ее эффективность как окислителя. Наиболее результативным веществом была двуокись азота, еще одно «странное» соединение. Обычно — газ бурого цвета, с резким неприятным запахом, но стоит его слегка охладить, он сжижается и две молекулы двуокиси склеиваются в одну. Поэтому соединение часто называют четырехокисью азота, или азотным тетраоксидом — АТ. При атмосферном давлении АТ кипит при комнатной температуре (+21 градус), а при -11 градусах замерзает. Чем ближе к точке замерзания, тем бледнее цвет соединения, становящегося под конец бледно-желтым, а в твердом состоянии — почти бесцветным. Это оттого, что газ состоит в основном из молекул NO2, жидкость — из смеси NO2 и димеров N2O4, а в твердом веществе остаются одни только бесцветные димеры.

Добавка АТ в азотную кислоту увеличивает эффективность окислителя сразу по многим причинам — АТ содержит меньше «балласта», связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты. Самое интересное, что с растворением АТ в АК плотность раствора сначала растет и достигает максимума при 14% растворенного АТ. Именно этот вариант состава и выбрали американские ракетчики для своих боевых ракет. Наши же стремились повысить характеристики двигателей любой ценой, поэтому в окислителях АК-20 и АК-27 было по 20% и 27% соответственно растворенного азотного тетраоксида. Первый окислитель использовался в зенитных ракетах, а второй — в баллистических. КБ Янгеля создало ракету средней дальности Р-12, которая использовала АК-27 и специальный сорт керосина ТМ-185.

Зажигалки

Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Военных больше всего устраивал бы продукт перегонки нефти, но и другие вещества, если они производились в достаточных количествах и стоили недорого, тоже можно было использовать. Проблема была одна — ни бензин, ни керосин, ни дизельное топливо не воспламеняются сами при контакте с азотной кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу. Хотя наша первая межконтинентальная ракета Р-7 использовала пару «керосин — жидкий кислород», стало ясно, что пиротехническое зажигание неудобно для боевых ракет. При подготовке ракеты к пуску требовалось вручную вставить в каждое сопло (а их у Р-7 ни много ни мало 32−20 основных камер и 12 рулевых) деревянную крестовину с зажигательной шашкой, подключить все электропровода, которыми шашки воспламеняются, и проделать еще много разных подготовительных операций.

В Р-12 эти недостатки были учтены, и зажигание обеспечивалось пусковым горючим, которое самовоспламенялось при контакте с азотной кислотой. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250». Наши ракетчики переименовали его в соответствии с ГОСТами в ТГ-02. Теперь ракета могла стоять заправленной несколько недель, и это был большой успех, так как ее можно было бы запустить в течение пары часов вместо трех суток для Р-7. Но три компонента — много для боевой ракеты, а для использования в качестве основного горючего ТГ-02 годился только для зенитных ракет; для баллистических ракет дальнего действия нужно было что-то более эффективное.

Гиперголики

Химики назвали пары веществ, самовоспламеняющихся при контакте, «гиперголическими», то есть, в приблизительном переводе с греческого, имеющими чрезмерное сродство друг с другом. Они знали, что лучше всего воспламеняются с азотной кислотой вещества, имеющие в составе, кроме углерода и водорода, азот. Но «лучше» — это насколько?

Задержка самовоспламенения — ключевое свойство для пар химических веществ, которые мы хотим сжечь в ракетном двигателе. Представьте — включили подачу, горючее и окислитель накапливаются в камере, а воспламенения нет! Зато, когда оно наконец происходит, мощный взрыв разносит камеру ЖРД на кусочки. Для определения задержки самовоспламенения разные исследователи строили самые разные по сложности стенды — от двух пипеток, синхронно выдавливающих по капельке окислителя и горючего, до маленьких ракетных двигателей без сопла — форсуночная головка и короткая цилиндрическая труба. Все равно взрывы раздавались очень часто, действуя на нервы, выбивая стекла и повреждая датчики.

Очень быстро был обнаружен «идеальный гиперголь» — гидразин, старый знакомый химиков. Это вещество, имеющее формулу N2H4, по физическим свойствам очень похоже на воду — плотность на несколько процентов больше, температура замерзания +1,5 градуса, кипения +113 градусов, вязкость и все прочее — как у воды, но вот запах…

Гидразин был получен впервые в чистом виде в конце XIX века, а в составе ракетного топлива впервые употреблен немцами в 1933 году, но в качестве сравнительно небольшой добавки для самовоспламенения. Как самостоятельное горючее гидразин был дорог, производство его недостаточно, но, главное, военных не устраивала его температура замерзания — выше, чем у воды! Нужен был «гидразиновый антифриз», и его поиски шли непрерывно. Уж очень гидразин хорош! Вернер фон Браун для запуска первого спутника США «Эксплорер» заменил спирт в ракете «Редстоун» на «гидин» (Hydyne), смесь 60% гидразина и 40% спирта. Такое горючее улучшило энергетику первой ступени, но для достижения необходимых характеристик пришлось удлинить баки.

Гидразин, как и аммиак NH3, состоит только из азота и водорода. Но если при образовании аммиака из элементов энергия выделяется, то при образовании гидразина энергия поглощается — именно поэтому прямой синтез гидразина невозможен. Зато поглощенная при образовании энергия выделится потом при сгорании гидразина в ЖРД и пойдет на повышение удельного импульса — главного показателя совершенства двигателя. Пара кислород-керосин позволяет получить удельную тягу для двигателей первой ступени в районе 300 секунд. Замена жидкого кислорода на азотную кислоту ухудшает эту величину до 220 секунд. Такое ухудшение требует увеличения стартовой массы почти в два раза. Если же заменить керосин гидразином, большую часть этого ухудшения можно «отыграть». Но военным было нужно, чтобы горючее не замерзало, и они требовали альтернативу.

Пути разошлись

И тут пути наших и американских химиков разошлись! В СССР химики придумали способ получения несимметричного диметилгидразина, а американцы предпочли более простой процесс, в котором получался монометилгидразин. Обе эти жидкости, несмотря на их чрезвычайную ядовитость, устраивали и конструкторов, и военных. К аккуратности при обращении с опасными веществами ракетчикам было не привыкать, но все же новые вещества были настолько токсичными, что обычный противогаз не справлялся с очисткой воздуха от их паров! Нужно было либо использовать изолирующий противогаз, либо специальный патрон, который окислял токсичные пары до безопасного состояния. Зато метилированные производные гидразина были менее взрывоопасными, меньше впитывали водяные пары, были термически более стойкими. Но вот температура кипения и плотность по сравнению с гидразином понизились.

Поэтому поиски продолжались. Американцы одно время очень широко использовали «Аэрозин-50» — смесь гидразина и НДМГ, что было следствием изобретения технологического процесса, в котором они получались одновременно. Позднее этот способ был вытеснен более совершенными, но «Аэрозин-50» успел распространиться, и на нем летали и баллистические ракеты «Титан-2», и корабль «Аполлон». Ракета «Сатурн-5» разгоняла его к Луне на жидком водороде и кислороде, но собственный двигатель «Аполлона», которому нужно было включаться несколько раз в течение недельного полета, должен был использовать самовоспламеняющееся долгохранимое топливо.

Тепличные условия

Но дальше с баллистическими ракетами произошла удивительная метаморфоза — они спрятались в шахты, для защиты от первого удара противника. При этом уже не требовалось морозостойкости, так как в шахте воздух подогревался зимой и охлаждался летом! Топливо можно было подбирать, не учитывая его морозоустойчивости. И сразу же двигателисты отказались от азотной кислоты, перейдя на чистый азотный тетраоксид. Тот самый, что кипит при комнатной температуре! Ведь давление в баке повышенное, а при повышенном давлении и температура кипения нас беспокоит гораздо меньше. Зато теперь коррозия баков и трубопроводов уменьшилась настолько, что стало возможным хранить ракету заправленной на протяжении всего срока боевого дежурства! Первой ракетой, которая могла стоять заправленной 10 лет подряд, стала УР-100 конструкции КБ Челомея. Почти одновременно с ней появилась гораздо более тяжелая Р-36 фирмы Янгеля. Нынешний ее потомок, последняя модификация Р-36М2, кроме баков, мало имеет общего с первоначальной ракетой.

По энергетическим характеристикам пары «кислород — керосин» и «четырехокись азота — НДМГ» очень близки. Но первая пара хороша для космических ракет-носителей, а вторая — для МБР шахтного базирования. Для работы с такими ядовитыми веществами была разработана специальная технология — ампулизация ракеты после заправки. Смысл ее понятен из названия: все магистрали перекрываются необратимо, чтобы избежать даже малейших утечек. Впервые она была применена на ракетах для подводных лодок, которые тоже использовали такое топливо.

Твердое топливо

Американские же ракетчики для боевых ракет предпочли твердое топливо. Оно имело несколько худшие характеристики, зато ракета требовала гораздо меньше подготовительных операций при запуске. Наши тоже пытались использовать твердотопливные ракеты, но последнюю ступень все равно приходилось делать жидкостной, для того чтобы скомпенсировать разброс работы твердотопливных двигателей, которые невозможно регулировать так, как жидкостные. А позднее, когда появились ракеты с несколькими боеголовками, на последнюю жидкостную ступень легла задача «разведения» их по целям. Так что пара «АТ-НДМГ» без работы не осталась. Не остается и сейчас: на этом топливе работают двигатели космического корабля «Союз», Международной космической станции и многих других аппаратов.

Жидкостный ракетный двигатель – это двигатель, топливом для которого служат сжиженные газы и химические жидкости. В зависимости от количества компонентов ЖРД делятся на одно-, двух- и трехкомпонентные.

Краткая история развития

Впервые использование сжиженного водорода и кислорода как топлива для ракет предложил К.Э. Циолковский в 1903 году. Первый прототип ЖРД создал американец Роберт Говард в 1926 году. Впоследствии подобные разработки проводились в СССР, США, Германии. Самых больших успехов добились немецкие ученые: Тиль, Вальтер, фон Браун. Во время Второй мировой войны они создали целую линейку ЖРД для военных целей. Есть мнение, что создай Рейх «Фау-2» раньше, они бы выиграли войну. Впоследствии холодная война и гонка вооружений стали катализатором для ускорения разработок ЖРД с целью применения их в космической программе. При помощи РД-108 были выведены на орбиту первые искусственные спутники Земли.

Сегодня ЖРД используется в космических программах и тяжелом ракетном вооружении.

Сфера применения

Как уже было сказано выше, ЖРД используется в основном как двигатель космических аппаратов и ракет-носителей. Основными преимуществами ЖРД есть:

  • наивысший удельный импульс в классе;
  • возможность выполнения полной остановки и повторного запуска в паре с управляемостью по тяге дает повышенную маневренность;
  • значительно меньший вес топливного отсека в сравнении со твердотопливными двигателями.

Среди недостатков ЖРД:

  • более сложное устройство и дороговизна;
  • повышенные требования к безопасной транспортировке;
  • в состоянии невесомости необходимо задействовать дополнительные двигатели для осаждения топлива.

Однако основным недостатком ЖРД является предел энергетических возможностей топлива, что ограничивает космическое освоение с их помощью до расстояния Венеры и Марса.

Устройство и принцип действия

Принцип действия ЖРД один, но он достигается при помощи разных схем устройств. Горючее и окислитель при помощи насосов поступают из разных баков на форсуночную головку, нагнетаются в камеру сгорания и смешиваются. После возгорания под давлением внутренняя энергия топлива превращается в кинетическую и через сопло вытекает, создавая реактивную тягу.

Топливная система состоит из топливных баков, трубопроводов и насосов с турбиной для нагнетания топлива из бака в трубопровод и клапана-регулятора.

Насосная подача топлива создает высокое давление в камере и, как следствие, большее расширение рабочего тела, за счет которого достигается максимальное значение удельного импульса.

Форсуночная головка – блок форсунок для осуществления впрыска топливных компонентов в камеру сгорания. Основное требование к форсунке – качественное смешивание и скорость подачи топлива в камеру сгорания.

Система охлаждения

Хотя доля теплоотдачи конструкции в процессе сгорания незначительна, проблема охлаждения актуальна ввиду высокой температуры горения (>3000 К) и грозит термическим разрушением двигателя. Выделяют несколько типов охлаждения стенок камеры:

    Регенеративное охлаждение базируется на создании полости в стенках камеры, через которую проходит горючее без окислителя, охлаждая стенку камеры, а тепло вместе с охладителем (горючим) возвращается обратно в камеру.

    Пристенный слой – это созданный из паров горючего слой газа у стенок камеры. Достигается этот эффект путем установки по периферии головки форсунок подающих только горючее. Таким образом горючая смесь испытывает недостаток окислителя, и горение у стенки происходит не так интенсивно, как в центре камеры. Температура пристенного слоя изолирует высокие температуры в центре камеры от стенок камеры сгорания.

    Абляционный метод охлаждения жидкостного ракетного двигателя осуществляется нанесением на стенки камеры и сопел специального теплозащитного покрытия. Покрытие при высоких температурах переходит из твердого состояния в газообразное, поглощая большую долю тепла. Данный метод охлаждения жидкостного ракетного двигателя использовался в лунной программе «Аполлон».

Запуск ЖРД очень ответственная операция в плане взрывоопасности при сбоях в ее осуществлении. Есть самовоспламеняющиеся компоненты, с которыми не возникает трудностей, однако при использовании для воспламенения внешнего инициатора необходима идеальная согласованность подачи его с компонентами топлива. Скопление несгоревшего топлива в камере имеет разрушительную взрывную силу и сулит тяжелые последствия.

Запуск больших жидкостных ракетных двигателей проходит в несколько ступеней с последующим выходом на максимальную мощность, в то время как малые двигатели запускаются с моментальным выходом на стопроцентную мощность.

Система автоматического управления жидкостных ракетных двигателей характеризируется выполнением безопасного запуска двигателя и выхода на основной режим, контролем стабильной работы, регулировкой тяги согласно плану полета, регулировкой расходников, отключением при выходе на заданную траекторию. Вследствие не поддающихся расчетам моментов ЖРД оснащается гарантийным запасом топлива, чтобы ракета могла выйти на заданную орбиту при отклонениях в программе.

Компоненты топлива и их выбор в процессе проектирования являются решающими в схеме построения жидкостного ракетного двигателя. Исходя из этого, определяются условия хранения, транспортировки и технологии производства. Важнейшим показателем сочетания компонентов является удельный импульс, от которого зависит распределение процента массы топлива и груза. Размеры и масса ракеты рассчитываются при помощи формулы Циолковского. Кроме удельного импульса, плотность влияет на размер баков с компонентами горючего, температура кипения может ограничивать условия эксплуатации ракет, химическая агрессивность свойственна всем окислителям и при несоблюдении правил эксплуатации баков может стать причиной возгорания бака, токсичность некоторых соединений топлива может нанести серьезный вред атмосфере и окружающей среде. Поэтому фтор хотя и является лучшим окислителем, чем кислород, не используется ввиду своей токсичности.

Однокомпонентные жидкостные ракетные двигатели как топливо используют жидкость, которая, взаимодействуя с катализатором, распадается с выходом горячего газа. Основное преимущество однокомпонентных ЖРД в простоте их конструкции, и хотя удельный импульс таких двигателей небольшой, они идеально подходят как двигатели с малой тягой для ориентации и стабилизации космических аппаратов. Данные двигатели используют вытеснительную систему подачи горючего и ввиду небольшой температуры процесса не нуждаются в системе охлаждения. К однокомпонентным двигателям относятся также газореактивные двигатели, которые используются в условиях недопустимости тепловых и химических выхлопов.

В начале 70-х годов США и СССР разрабатывали трехкомпонентные жидкостные ракетные двигатели, которые использовали бы в качестве горючего водород и углеводородное горючее. Таким образом двигатель работал бы на керосине и кислороде при запуске и переключался на жидкий водород и кислород на большой высоте. Примером трехкомпонентного ЖРД в России есть РД-701.

Управление ракетой впервые было применено в ракетах «Фау-2» при использовании графитных газодинамических рулей, однако это снижало тягу двигателя, и в современных ракетах используются поворотные камеры, прикрепленные к корпусу шарнирами, создающими маневренность в одной или двух плоскостях. Кроме поворотных камер, используются также двигатели управления, которые закреплены соплами в противоположном направлении и включаются при необходимости управления аппаратом в пространстве.

ЖРД закрытого цикла – это двигатель, один из компонентов которого газифицируется при сжигании при небольшой температуре с малой частью другого компонента, полученный газ выступает как рабочее тело турбины, а после подается в камеру сгорания, где сгорает с остатками топливных компонентов и создает реактивную тягу. Основным недостатком данной схемы есть сложность конструкции, но при этом удельный импульс увеличивается.

Перспектива увеличения мощности жидкостных ракетных двигателей

В российской школе создателей ЖРД, руководителем которой долгое время был академик Глушко, стремятся к максимальному использованию энергии топлива и, как следствие, предельно возможному удельному импульсу. Так как максимальный удельный импульс можно получить лишь при повышении расширения продуктов сгорания в сопле, все разработки ведутся на поиски идеальной топливной смеси.

Ракетные Двигатели

Реферат выполнила

Ученица 9Б класса

Кожасова Индира


введение. 2

назначение и виды ракетных двигателей. 2

Термохимические ракетные двигатели. 3

Ядерные ракетные двигатели. 6

другие виды ракетных двигателей. 8

Электрические ракетные двигатели. 9

Использованная литература. 10

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот.

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

По виду применяемого топлива (рабочего тела) ракетные двигатели подразделяются на:

Твердотопливные

Жидкостные

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород. Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет.

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества.

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400 с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

Большую силу тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура этой струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода и кислорода. Основные данные типичных топлив для жидкостных реактивных двигателей приведены в таблице №1

Но у кислорода наряду с достоинствами есть и один недостаток – при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя ведь в этом случае пришлось бы его хранить под большим давлением в массивных баллонах. Поэтому уже Циолковский, первым предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде как о компоненте без которого космические полеты не будут возможны.

Чтобы превратить кислород в жидкость, его нужно охладить до температуры -183°С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя долго держать снаряженной ракету, двигатель которой использует в качестве окислителя жидкий кислород. Заправлять кислородный бак такой ракеты приходится непосредственно перед запуском. Если такое возможно для космических и других ракет гражданского назначения, то для военных ракет, которые требуется поддерживать в готовности к немедленному запуску в течение длительного времени такое неприемлемо. Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся» окислителем. Этим объясняется её прочное положение в ракетной технике, особенно военной, несмотря на существенно меньшую силу тяги, которую она обеспечивает.

Использование наиболее сильного из всех известных химии окислителей – фтора позволит существенно увеличить эффективность жидкостных реактивных двигателей. Однако жидкий фтор очень неудобен в эксплуатации и хранении из-за ядовитости и низкой температуры кипения (-188°С). Но это не останавливает ученых-ракетчиков: экспериментальные двигатели на фторе уже существуют и испытываются в лабораториях и на экспериментальных стендах.

Советский ученый Ф.А. Цандер еще в тридцатые годы в своих трудах предложил использовать в межпланетных полетах в качестве горючего легкие металлы, из которых будет изготовлен космический корабль – литий, бериллий, алюминий и др. В особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую из возможных для химических топлив скорость истечения – до 5 км/с. Но это уже практически предел ресурсов химии. Большего она практически сделать не может.

Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ.

Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию.

В целом твердотопливные ракетные двигатели на имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества.

Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается.

У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость.

В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода.

Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер.

Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210 Ро она равна 5*10 8 КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг.

К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте.

В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235 U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210 Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233 U, 235 U, 238 U, 239 Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с.

В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу.

Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах.

Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна.

Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей:

Импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

Термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*10 11 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

Солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик П.Н. Лебедев еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром.

В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции. Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с.

Первый электрический ракетный двигатель был разработан в Советском Союзе в 1929-1933 гг. под руководством В.П. Глушко (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ).

1. Советский энциклопедический словарь

2. С.П. Уманский. Космонавтика сегодня и завтра. Кн. Для учащихся.

«... И нет ничего нового под солнцем»
(Экклизиаст 1:9).
О топливах, ракетах, ракетных двигателях писалось, пишут и будут писать.


Одной из первых работ по топливам ЖРД можно считать книгу В.П. Глушко "Жидкое топливо для реактивных двигателей", изданную в 1936 г.

Для меня тема показалась интересной, связанной с моей бывшей специальностью и учёбой в ВУЗе, тем паче "приволок" её мой младший отпрыск: "Шеф давай замесим, что нить такое и запустим, а если лень, то мы сами "сообразим". Видимо, не дают покоя.

Так хочется правильно взорвать свой ракетный двигатель.


"Соображать" будем вместе, под строгим родительским контролем. Руки ноги должны быть целыми, чужие тем более.

Важный параметр - коэффициент избытка окислителя (обозн. греческой "α" с индексом "ок.") и массовое соотношение компонентов Kм.

Kм=(dmок./dt)/(dmг../dt), т.е. отношение массового расхода окислителя к массовому расходу горючего. Он специфичен для каждого топлива. В идеальном случае представляет собой стехиометрическое соотношение окислителя и горючего, т.е. показывает сколько кг окислителя нужно для окисления 1 кг горючего. Однако реальные значения отличаются от идеальных. Соотношение реального Kм к идеальному и есть коэффициент избытка окислителя.

Как правило, αок.<=1. И вот почему. Зависимости Tk(αок.) и Iуд.(αок.) нелинейны и для многих топлив последняя имеет максимум при αок. не при стехиометрическом соотношении компонентов, т.е макс. значения Iуд. получаются при некотором снижении количества окислителя по отношению к стехиометрическому. Ещё немного терпения, т.к. не могу обойти понятие: . Это пригодится и в статье, и в повседневной жизни.

Кратко энтальпия – это энергия. Для статьи важны две её "ипостаси":
Термодинамическая энтальпия - количество энергии, затраченной на образование вещества из исходных химических элементов. Для веществ, состоящих из одинаковых молекул (H 2 , O 2 и пр.), она равна нулю.
Энтальпия сгорания - имеет смысл только при условии протекания химической реакции. В справочниках можно найти экспериментально полученные при нормальных условиях значения этой величины. Чаще всего для горючих это полное окисление в среде кислорода, для окислителей – окисление водорода заданным окислителем. Причем значения могут быть как положительными, так и отрицательными в зависимости от вида реакции.

"Сумму термодинамической энтальпии и энтальпии сгорания называют полной энтальпией вещества. Собственно, этой величиной и оперируют при тепловом расчёте камер ЖРД."

Требования к ЖРТ:
-как к источнику энергии;
-как к веществу, которое приходится (на данном уровне развития технологий) использовать для охлаждения РД и ТНА, иногда к наддуву баков с РТ, предоставлять ему объём (баки РН) и т.д.;
-как к веществу вне ЖРД, т.е. при хранении, транспортировке, заправке, испытаниях, экологической безопасности и т.д.

Такая градация относительна условна, но в принципе отражает суть. Назову эти требования так: №1, №2, №3. Кто-то может дополнить список в комментариях.
Эти требования классический пример , которые "тянут" создателей РД в разные стороны:

# С точки зрения источника энергии ЖРД (№1)

Т.е. необходимо получить макс. Iуд. Не буду дальше забивать головы всем, в общем случае:

При прочих важных параметрах для №1 нас интересует R и Т (со всеми индексами).
Нужно, чтобы: молекулярная масса продуктов сгорания была минимальной, максимальным было удельное теплосодержание.

# С точки зрения конструктора РН (№2):

ТК должны иметь максимальную плотность, особенно на первых ступенях ракет, т.к. они самые объёмные и имеют мощнейшие РД, с большим секундным расходом. Очевидно, что это не согласуется с требованием под №1.

# С эксплуатационных задач важны (№3):

Химическая стабильность ТК;
-простота заправки, хранения, перевозки и изготовления;
-экологическая безопасность (во всём "поле" применения), а именно токсичность, себестоимость производства и транспортировки и т.д. и безопасность при работе РД (взрывоопасность).

Подробнее смотри "Сага о ракетных топливах-обратная сторона медали".


Надеюсь, ещё никто не уснул? У меня ощущение, что разговариваю сам с собой. Скоро будет про спирт, не отключайтесь!

Конечно, это лишь вершина айсберга. Ещё влезают сюда дополнительные требования, из-за которых следует искать КОНСЕНСУСЫ и КОМПРОМИСЫ. Один из компонентов обязательно должен иметь удовлетворительные (лучше отличные) свойства охладителя, т.к. на данном уровне технологий приходится охлаждать КС и сопло, а также защитить критическое сечение РД:

На фотографии сопло ЖРД XLR-99: отчётливо видна характерная особенность конструкции американских ЖРД 50-60 годов – трубчатая камера:

Также требуется (как правило) один из компонентов использовать как рабочее тело для турбины ТНА:

Для топливных компонентов "большое значение имеет давление насыщенных паров (это грубо говоря давление, при котором жидкость начинает кипеть при данной температуре). Этот параметр сильно влияет на разработку насосов и вес баков."/ С.С. Факас/

Важный фактор-агрессивность ТК к материалам (КМ) ЖРД и баков для их хранения.
Если ТК очень "вредные" (как некоторые люди), тогда инженерам приходится тратиться на ряд специальных мер по защите своих конструкций от топлива.

Классификация ЖРТ - чаще всего по давлению насыщенных паров или , а проще говоря - температуре кипения при нормальном давлении.

Высококипящие компоненты ЖРТ.

Такие ЖРД можно классифицировать как многотопливные.
ЖРД на трехкомпонентном топливе (фтор+водород+литий) разрабатывался в .

Двухкомпонентные топлива состоят из окислителя и горючего.
ЖРД Bristol Siddeley BSSt.1 Stentor: двухкомпонентный ЖРД (H2O2+керосин)

Окислители

Кислород

Химическая формула-О 2 (дикислород, американское обозначение Oxygen-OX).
В ЖРД применяется жидкий, а не газообразный кислород-Liquid oxygen (LOX-кратко и всё понятно).
Молекулярная масса (для молекулы)-32г/моль. Для любителей точности: атомная масса (молярная масса)=15,99903;
Плотность=1,141 г/см³
Температура кипения=90,188K (−182,96°C)

С точки зрения химии, идеальный окислитель. Он использовался в первых баллистических ракетах ФАУ, ее американских и советских копиях. Но его температура кипения не устраивала военных. Требуемый диапазон рабочих температур от –55°C до +55°C (большое время подготовки к старту, малое время нахождения на боевом дежурстве).

Очень низкая коррозионная активность. Производство давно освоено, стоимость небольшая: менее $0,1 (по-моему, дешевле литра молока в разы).
Недостатки:

Криогенный - необходимо захолаживание и постоянная дозаправка для компенсации потерь перед стартом. Еще и может нагадить другим ТК (керосину):

На фото: створки защитных устройств заправочного автостыка керосина (ЗУ-2), за 2 минуты до окончания циклограммы при выполнении операции ЗАКРЫТЬ ЗУ из-за обледенения не полностью закрылись . Одновременно из-за обледенения не прошел сигнал о съезде ТУА с пусковой установки. Пуск проведен на следующий день.

Агрегат-заправщик РБ жидким кислородом снят с колес и установлен на фундаменте.

Затруднено использование в качестве охладителя КС и сопла ЖРД.

"АНАЛИЗ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ КИСЛОРОДА В КАЧЕСТВЕ ОХЛАДИТЕЛЯ КАМЕРЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ" САМОШКИН В.М., ВАСЯНИНА П.Ю., Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Сейчас всеми изучается возможность использования переохлажденного кислорода либо кислорода в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента. Вид будет примерно такой же, как эта красивая ледяная шуга в бухточке правее Шаморы:


Пофантазируйте: вместо Н 2 О представьте ЖК (LOX).

Шугирование позволит увеличить общую плотность окислителя.

Пример захолаживания (переохлаждения) БР Р-9А: в качестве окислителя в ракете впервые было решено использовать переохлажденный жидкий кислород, что позволило уменьшить общее время подготовки ракеты к пуску и повысить степень ее боеготовности.

Примечание: почему-то за эту же самую процедуру нагибал (почти "чморил") Илона Маска известный писатель Дмитрий Конаныхин.
См:

Озон -O 3

Молекулярная масса=48 а.е.м., молярная масса=47,998 г/моль
Плотность жидкости при -188 °C (85,2 К) составляет 1,59(7) г/см³
Плотность твёрдого озона при −195,7 °С (77,4 К) равна 1,73(2) г/см³
Температура плавления −197,2(2) °С (75,9 К)

Давно инженеры мучились с ним, пытаясь использовать в качестве высокоэнергетического и вместе с тем экологически чистого окислителя в ракетной технике.

Общая химическая энергия, освобождающаяся при реакции сгорания с участием озона, больше, чем для простого кислорода, примерно на одну четверть (719 ккал/кг). Больше будет, соответственно, и Iуд. У жидкого озона большая плотность, чем у жидкого кислорода (1,35 против 1,14 г/см³ соответственно), а его Т кипения выше (−112 °C и −183 °C соответственно).

Пока непреодолимым препятствием является химическая неустойчивость и взрывоопасность жидкого озона с разложением его на O и O2, при котором возникает движущаяся со скоростью около 2 км/с детонационная волна и развивается разрушающее детонационное давление более 3·107 дин/см2 (3 МПа), что делает применение жидкого озона невозможным при нынешнем уровне техники, за исключением использования устойчивых кислород-озоновых смесей (до 24 % озона). Преимуществом подобной смеси также является больший удельный импульс для водородных двигателей, по сравнению с озон-водородными. На сегодняшний день такие высокоэффективные двигатели, как РД-170, РД-180, РД-191, а также разгонные вакуумные двигатели вышли по Iуд на близкие к предельным значениям параметры и для повышения УИ осталось лишь одна возможность, связанная с переходом на новые виды топлива.

Азотная кислота -HNO 3

Состояние - жидкость при н.у.
Молярная масса 63.012 г/моль (не важно, что я использую или молекулярную массу-это не меняет сути)
Плотность=1,513 г/см³
Т. плав.=-41,59 °C,Т. кип.=82,6 °C

HNO3 имеет высокую плотность, невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасная. Главное ее преимущество перед жидким кислородом в высокой температуре кипения, а, следовательно, в возможности неограниченно долго храниться без всякой теплоизоляции. Молекула азотной кислоты HNO 3 – почти идеальный окислитель. Она содержит в качестве “балласта” атом азота и “половинку” молекулы воды, а два с половиной атома кислорода можно использовать для окисления топлива. Но не тут-то было! Азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой–атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали медленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества, всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз.

Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Добавка диоксида азота в кислоту связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного NO 2 . Эту концентрацию использовали американцы для своих боевых ракет.

Мы почти 20 лет искали подходящую тару для азотной кислоты. Очень трудно при этом подобрать конструкционные материалы для баков, труб, камер сгорания ЖРД.

Вариант окислителя, что выбрали в США, с 14 % двуокиси азота. А наши ракетчики поступили иначе. Надо было догонять США любой ценой, поэтому окислители советских марок – АК-20 и АК-27 – содержали 20 и 27 % тетраоксида.

Интересный факт: в первом советском ракетном истребителе БИ-1 были использованы для полетов азотная кислота и керосин.

Баки и трубы пришлось изготовлять из монель-металла: сплава никеля и меди, он стал очень популярным конструкционным материалом у ракетчиков. Советские рубли были почти на 95 % сделаны из этого сплава.

Недостатки: терпимая "гадость". Коррозионною активна. Удельный импульс недостаточно высок. В настоящее время в чистом виде почти не используется.

Азотный тетраоксид -АТ (N 2 O 4)

Молярная масса=92,011 г/моль
Плотность=1,443 г/см³


"Принял эстафету" от азотной кислоты в военных двигателях. Обладает саомовоспламеняемостью с гидразином, НДМГ. Низкокипящий компонент, но может долго хранится при принятии особых мер.

Недостатки: такая же гадость, как и HNO 3 , но со своими причудами. Может разлагаться на окись азота. Токсичен. Низкий удельный импульс. Часто использовали и используют окислитель АК-NN. Это смесь азотной кислоты и азотного тетраоксида, иногда её называют "красной дымящейся азотной кислотой". Цифры обозначают процентное кол-во N 2 O 4 .

В основном эти окислители используются в ЖРД военного назначения и ЖРД КА благодаря своим свойствам: долгохранимость и самовоспламеняемость. Характерные горючие для АТ это НДМГ и гидразин.

Фтор -F 2

Атомная масса=18,998403163 а. е. м. (г/моль)
Молярная масса F2, 37,997 г/моль
Температура плавления=53,53 К (−219,70 °C)
Температура кипения=85,03 К (−188,12 °C)
Плотность (для жидкой фазы), ρ=1,5127 г/см³

Химия фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 годов и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "Фтор" (от греч. phthoros - разрушение, гибель), предложенное А. Ампером в 1810 году, употребляется только в русском языке; во многих странах принято название "флюор" . Это прекрасный окислитель с точки зрения химии. Окисляет и кислород, и воду, и вообще практически всё. Расчеты показывают, что максимальный теоретический Iуд можно получить на паре F2-Be (бериллий)-порядка 6000 м/с!

Супер? Облом, а не "супер"...

Врагу такой окислитель не пожелаешь.
Чрезвычайно коррозионною активен, токсичен, склонен к взрывам при контакте с окисляющимися материалами. Криогенен. Любой продукт сгорания также имеет почти те же "грехи": жутко коррозионны и токсичны.

Техника безопасности. Фтор токсичен, предельно допустимая концентрация его в воздухе примерно 2·10-4 мг/л, а предельно допустимая концентрация при экспозиции не более 1 ч составляет 1,5·10-3мг/л.

ЖРД 8Д21 применение пары фтор + аммиак давало удельный импульс на уровне 4000 м/с.
Для пары F 2 +H 2 получается Iуд=4020 м/с!
Беда: HF-фтороводород на "выхлопе".

Стартовая позиция после запуска такого "энергичного движка"?
Лужа жидких металлов и прочих растворённых в плавиковой кислоте химических и органических объектов!
Н 2 +2F=2HF, при комнатной температуре существует в виде димера H 2 F 2 .

Смешивается с водой в любом отношении с образованием фтороводородной (плавиковой) кислоты. А использованию его в ЖРД КА не реально из-за убийственной сложности хранения и разрушительного действия продуктов сгорания.

Всё то же самое относится и к остальным жидким галогенам, например, к хлору.

Фтороводородный ЖРД тягой 25 т для оснащения обеих ступеней ракетного ускорителя предполагалось разработать в В.П. Глушко на базе отработанного ЖРД тягой 10 т на фтороаммиачном (F 2 +NH 3) топливе.

Перекись водорода -H 2 O 2 .

Она упомянута мною выше в однокомпонентных топливах.

Walter HWK 109-507: преимущества в простоте конструкции ЖРД. Яркий пример такого топлива - перекись водорода.

Alles: список более-менее реальных окислителей закончен. Акцентирую внимание на HClО 4 . Как самостоятельные окислители на основе хлорной кислоты представляют интерес только: моногидрат (Н 2 О+ClО 4)-твёрдое кристаллическое вещество и дигидрат (2НО+НСlО 4)-плотная вязкая жидкость. Хлорная кислота (которая из-за Iуд сама по себе бесперспективна), при этом представляет интерес в качестве добавки к окислителям, гарантирующей надёжность самовоспламенения топлива.

Окислители можно классифицировать и так:

Итоговый (чаще используемый) список окислителей в связке с реальными же горючими:

Примечание: если хотите перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с.
В отличие от них - горючих у нас .

Горючие

Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПа

По физико-химическому составу их можно разбить на несколько групп:

Углеводородные горючие.
Низкомолекулярные углеводороды.
Простые вещества: атомарные и молекулярные.

Для этой темы пока практический интерес представляет лишь водород (Hydrogenium).
Na, Mg, Al, Bi, He, Ar, N 2 , Br 2 , Si, Cl 2 , I 2 и др. я не буду рассматривать в этой статье.
Гидразиновые топлива ("вонючки").

Просыпайтесь сони - мы добрались уже до спирта(С2Н5ОН).

Поиски оптимального горючего начались с освоения энтузиастами ЖРД. Первым широко использовавшимся горючим стал спирт (этиловый) , применявшийся на первых
советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2) и на самой Vergeltungswaffe-2.

Вернее раствор 75% этилового спирта (этанол, этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») - одноатомный спирт с формулой C 2 H 5 OH (эмпирическая формула C 2 H 6 O), другой вариант: CH 3 -CH 2 -OH
У этого горючего два серьёзных недостатка , которые очевидно не устраивали военных: низкие энергетические показатели и .

Сторонники здорового образа жизни (спиртофобы) пытались решить вторую проблему с помощью фурфурилового спирта. Это ядовитая, подвижная, прозрачная, иногда желтоватая (до темно-коричневого), со временем краснеющая на воздухе жидкость. ВАРВАРЫ!

Хим. формула:C 4 H 3 OCH 2 OH, Рац. формула:C 5 H 6 O 2 . Отвратительная жижа.К питью не годна.

Группа углеводородов.

Керосин

Условная формула C 7,2107 H 13,2936
Горючая смесь жидких углеводородов (от C 8 до C 15) с температурой кипения в интервале 150-250 °C, прозрачная, бесцветная (или слегка желтоватая), слегка маслянистая на ощупь
плотность - от 0,78 до 0,85 г/см³ (при температуре 20°С);
вязкость - от 1,2 – 4,5 мм²/с (при температуре 20°С);
температура вспышки - от 28°С до 72°С;
теплота сгорания - 43 Мдж/кг.

Моё мнение: о точной молярной массе писать бессмысленно

Керосин является смесью из различных углеводородов, поэтому появляются страшные дроби (в хим. формуле) и "размазанная" температура кипения. Удобное высококипящее горючее. Используется давно и успешно во всём мире в двигателях и в авиации. Именно на нем до сих пор летают "Союзы". Малотоксичен (пить настоятельно не рекомендую), стабилен. Всё же керосин опасен и вреден для здоровья (употребление внутрь).
Минздрав категорически против!
Солдатские байки: хорошо помогает избавиться от противных .

Однако и он требует осторожности в обращении при эксплуатации:

Существенные плюсы: сравнительно недорог, освоен в производстве. Пара керосин-кислород идеальна для первой ступени. Ее удельный импульс на земле 3283 м/с, пустотный 3475 м/с. Недостатки. Относительно малая плотность.

Американские ракетные керосины Rocket Propellant-1 или Refined Petroleum-1


Относительно был .
Для повышения плотности лидерами освоения космоса были разработаны синтин (СССР) и RJ-5 (США).
.

Керосин имеет склонность к отложению смолистых осадков в магистралях и тракте охлаждения, что отрицательно сказывается на охлаждении. На это его нехорошее свойство педалируют .
Керосиновые двигатели наиболее освоены в СССР.

Шедевр человеческого разума и инженерии наша "жемчужина" РД-170/171:

Теперь более корректным названием для горючих на основе керосина стал термин -"углеводородное горючее", т.к. от керосина, который жгли в безопасных керосиновых лампах И. Лукасевича и Я. Зеха, применяемое УВГ "ушло" очень .

На самом деле "Роскосмос" дезу выдаёт:

После того, как в ее баки закачают компоненты топлива - нафтил (ракетный керосин ), сжиженный кислород и пероксид водорода, космическая транспортная система будет весить более 300 тонн (в зависимости от модификации РН.

Низкомолекулярные углеводороды

Метан -CH4


Молярная масса: 16,04 г/моль
Плотность газ (0 °C) 0,7168 кг/м³;
жидкость (−164,6 °C) 415 кг/м³
Т. плав.=-182,49 °C
Т. кип.=-161,58 °C

Всеми сейчас рассматривается как перспективное и дешёвое топливо, как альтернатива керосину и водороду.
Главный конструктор Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Недорог, распространен, устойчив, малотоксичен. По сравнению с водородом имеет более высокую температуру кипения, а удельный импульс в паре с кислородом выше, чем у керосина: около 3250-3300 м/с на земле. Неплохой охладитель.

Недостатки. Низкая плотность (вдвое ниже чем у керосина). При некоторых режимах горения может разлагаться с выделением углерода в твердой фазе, что может привести к падению импульса из-за двухфазности течения и резкому ухудшению режима охлаждения в камере из-за отложения сажи на стенках КС. В последнее время идут активные НОР и НИОКР в области его применения (наряду с пропаном и природным газом) даже в направлении модификации уже сущ. ЖРД (в частности такие работы были проведены над ).


«Роскосмос» уже в 2016 году приступил к разработке силовой установки на сжиженном природном газе.

Или "Kinder Surpeis", как пример: американский Raptor engine от Space X:

К этим топливам можно отнести пропан и природный газ. Основные их характеристики, как горючих, близки (за исключением большей плотности и более высокой температуры кипения) к УВГ. И имеются такие же проблемы при их использовании.

Особняком среди горючих позиционируется -H 2 (Жидкий: LH 2).


Молярная масса водорода равна 2 016 г / моль или приближенно 2 г / моль.
Плотность (при н. у.)=0,0000899 (при 273 K (0 °C)) г/см³
Температура плавления=14,01K (-259,14 °C);
Температура кипения=20,28K (-252,87 °C);


Использование пары LOX-LH 2 предложено еще Циолковским, но реализовано другими:

С точки зрения термодинамики Н 2 идеальное рабочее тело как для самого ЖРД, так и для турбины ТНА. Отличный охладитель, при чем как в жидком, так и в газообразном состоянии. Последний факт позволяет не особо бояться кипения водорода в тракте охлаждения и использовать газифицированный таким образом водород для привода ТНА.

Такая схема реализована в Aerojet Rocketdyne RL-10-просто шикарный (с инженерной точки зрения) движок:

Наш аналог (даже лучше , т.к. моложе): РД-0146 (Д, ДМ) - безгазогенераторный жидкостный ракетный двигатель, разработанный Конструкторским бюро химавтоматики в Воронеже.

Особенно эффективен с сопловым насадком из материала «Граурис». Но пока не летает

Этот ТК обеспечивает высокий удельный импульс-в паре с кислородом 3835 м/с.

Из реально используемых это самый высокий показатель. Эти факторы обуславливают пристальный интерес к этому горючему. Экологически чист, на "выходе" в контакте с О 2: вода (водяной пар). Распространен, практически неограниченные запасы. Освоен в производстве. Нетоксичен. Однако есть очень много ложек дегтя в этой бочке мёда.

1. Чрезвычайно низкая плотность. Все видели огромные водородные баки РН "Энергия" и МТКК "Шаттл". Из-за низкой плотности применим (как правило) на верхних ступенях РН.

Кроме того, низкая плотность ставит непростую задачу для насосов: насосы водорода многоступенчатые для того что бы обеспечить нужный массовый расход и при этом не кавитировать.

По этой же причине приходится ставить т.н. бустерные насосные агрегаты горючего (БНАГ) сразу за заборным устройством в баках, дабы облегчить жизнь основному ТНА.

Ещё насосы водорода для оптимальных режимов требуют значительно большей частоты вращения ТНА.

2. Низкая температура. Криогенное топливо. Перед заправкой необходимо проводить многочасовое захолаживание (и/или переохлаждение) баков и всего тракта. Баки РН "Falocn 9FT" - взгляд изнутри:

Подробнее о "сюрпризах":
"МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ВОДОРОДНЫХ СИСТЕМАХ" Н0Р В.А. ГордеевВ.П. Фирсов, А.П. Гневашев, Е.И. Постоюк
ФГУП «ГКНПЦ им. М.В. Хруничева, КБ «Салют»; "Московский авиационный институт (Государственный технический университет)

В работе дана характеристика основных математических моделей тепломассообменных процессов в баке и магистралях водорода кислородно-водородного разгонного блока 12КРБ. Выявлены аномалии в подаче водорода в ЖРД и предложено их математическое описание. Модели отработаны в ходе стендовых и летных испытаний, что дало возможность на их базе прогнозировать параметры серийных разгонных блоков различных модификаций и принимать необходимые технические решения по совершенствованию пневмогидравлических систем.


Низкая температура кипения затрудняет и закачку в баки и хранение этого топлива в баках и хранилищах.

3. Жидкий водород обладает некоторыми свойствами газа:

Коэффициент сжимаемости (pv/RT) при 273,15 К: 1,0006 (0,1013 МПа), 1,0124 (2,0266 МПа), 1,0644 (10,133 МПа), 1,134 (20,266 МПа), 1,277 (40,532 МПа) ;
Водород может находиться в орто- и пара-состояниях. Ортоводород (о-Н2) имеет параллельную (одного знака) ориентацию ядерных спинов. Пара-водород (п-Н2)-антипараллельную.

При обычных и высоких температурах Н 2 (нормальный водород, н-Н2) представляет собой смесь 75% орто- и 25% пара-модификаций, которые могут взаимно превращаться друг в друга (орто-пара-превращение). При превращении о-Н 2 в п-Н 2 выделяется тепло (1418 Дж/моль) .


Это всё накладывает дополнительные трудности в проектировании магистралей, ЖРД, ТНА, циклограммы работы, и особенно насосов.

4. Газообразный водород быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Н 2г обладает высокой теплопроводностью, равной при 273,15 К и 1013 гПа 0,1717 Вт/(м*К) (7,3 по отношению к воздуху).

Водород в обычном состоянии при низких температурах малоактивен, без нагревания реагирует лишь с F 2 и на свету с Сl 2 . С неметаллами водород взаимодействует активнее, чем с металлами. С кислородом реагирует практически необратимо, образуя воду с выделением 285,75 МДж/моль тепла;

5. Со щелочными и щелочно-земельными металлами, элементами III, IV, V и VI группы периодической системы, а также с интерметаллическими соединениями водород образует гидриды. Водород восстанавливает оксиды и галогениды многих металлов до металлов, ненасыщенные углеводороды – до насыщенных (см. ).
Водород очень легко отдает свой электрон. В растворе отрывается в виде протона от многих соединений, обусловливая их кислотные свойства. В водных растворах Н+ образует с молекулой воды ион гидроксония Н 3 О. Входя в состав молекул различных соединений, водород склонен образовывать со многими электроотрицательными элементами (F, О, N, С, В, Cl, S, Р) водородную связь.

6. Пожароопастность и взрывоопасность. Можно не рассусоливать: гремучую смесь все знают.
Смесь водорода с воздухом взрывается от малейшей искры в любой концентрации - от 5 до 95 процентов.

Впечатляет Space Shuttle Main Engine (SSME)?


Теперь прикиньте его стоимость!
Вероятно, увидев это и посчитав затраты (стоимость вывода на орбиту 1 кг ПН), законодатели и те кто рулит бюджетом США и NASA в частности... решили "ну его на фиг".
И я их понимаю - на РН "Союз" и дешевле, и безопаснее, да использование РД-180/181 снимает многие проблемы американских РН и существенно экономит деньги налогоплательщиков самой богатой страны мира.

Самый лучший ракетный двигатель - это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько (удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас. /Филипп Терехов@lozga

Наиболее освоены водородные двигатели в США.
Сейчас мы позиционируемся на 3-4 месте в "Водородном клубе" (после Европы, Японии и Китая/Индии).

Отдельно упомяну твёрдый и металлический водород.


Твердый водород кристаллизуется в гексагональной решетке (а = = 0,378 нм, с = 0,6167 нм), в узлах которой расположены молекулы Н 2 , связанные между собой слабыми межмолекулярными силами; плотность 86,67 кг/м³; С° 4,618 Дж/(моль*К) при 13 К; диэлектрик. При давлении свыше 10000 МПа предполагается фазовый переход с образованием структуры, построенной из атомов и обладающей металлическими свойствами. Теоретически предсказана возможность сверхпроводимости "металлический водород".

Твёрдый водород-твёрдое агрегатное состояние водорода.
Температура плавления −259,2 °C (14,16 К).
Плотностью 0,08667 г/см³ (при −262 °C).
Белая снегоподобная масса, кристаллы гексагональной сингонии.


Шотландский химик Дж. Дьюар в 1899 году впервые получил водород в твёрдом состоянии. Для этого он использовал регенеративную охлаждающую машину, основанную на эффекте .

Беда с ним. Он постоянно теряется: . Оно и понятно: получен кубик из молекул: 6х6х6. Просто "гигантские" объёмы - прям хоть сейчас "заправляй" ракету. Почему-то мне это напомнило . Это нано-чудо не могут найти уже лет 7 или больше.

Анамезон, антивещество, метастабильный гелий пока оставлю за кадром.


...
Гидразиновые топлива ("вонючки")
Гидразин-N2H4


Состояние при н.у.- бесцветная жидкость
Молярная масса=32.05 г/моль
Плотность=1.01 г/см³


Очень распространенное топливо.
Хранится долго, и его за это "любят". Широко используется в ДУ КА и МБР/БРПЛ, где долгохранимость имеет критическое значение.

Кого смутил Iуд в размерности Н*с/кг отвечаю: это обозначение "любят" военные.
Ньютон - производная единица, исходя из она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с 2 .
Соответственно: 1 Н*с/кг =1 кг·м/с 2 *с/кг=м/с.
Освоен в производстве.

Недостатки: токсичен, вонючий.

Для человека степень токсичности гидразина не определена. По расчётам S. Krop опасной концентрацией следует считать 0,4 мг/л. Ch. Comstock с сотрудниками полагает, что предельно допустимая концентрация не должна превышать 0,006 мг/л. Согласно более поздним американским данным, эта концентрация при 8-часовой экспозиции снижена до 0,0013 мг/л. Важно отметить при этом, что порог обонятельного ощущения гидразина человеком значительно превышает указанные числа и равен 0,014-0,030 мг/л. Существенным в этой связи является и тот факт, что характерный запах ряда гидразинопроизводных ощущается лишь в первые минуты контакта с ними. В дальнейшем вследствие адаптации органов обоняния, это ощущение исчезает, и человек, не замечая того, может длительное время находиться в зараженной атмосфере, содержащей токсические концентрации названного вещества.

Пары гидразина при адиабатном сжатии взрываются. Склонен к разложению, что однако позволяет его использовать как монотопливо для ЖРД малой тяги (ЖРДМТ). В силу освоенности производства более распространен в США.

Несимметричный диметилгидразин (НДМГ)-H 2 N-N(CH 3) 2

Хим. формула:C2H8N2,Рац. формула:(CH3)2NNH2
Состояние при н.у.- жидкое
Молярная масса=60,1 г/моль
Плотность=0,79±0,01 г/см³


Широко используется на военных двигателях в следствие своей долгохранимости. При освоении технологии ампулирования - практически исчезли все проблемы (кроме утилизации и аварий припусках).

Имеет более высокий импульс по сравнению с гидразином.

Плотность и удельный импульс с основными окислителями ниже керосина с теми же окислителями. Самовоспламенятся с азотными окислителями. Освоен в производстве в СССР.
Более распространен в СССР.
А в реактивном двигателе французского истребителя-бомбардировщика (хорошее видео-рекомендую) НДМГ используют как активизирующую добавку к традиционному топливу.

По поводу гидразиновых топлив.

Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

За кадром остались:
Анилин, метил-, диметил- и триметиламины и CH 3 NHNH 2 -Метилгидразин (он же монометилгидразин или гептил) и пр.

Они не так распространены. Главное достоинство горючих группы гидразина - долгохранимость при использовании высококипящих окислителей. Работать с ними очень неприятно-токсичны горючие, агрессивные окислители, токсичны продукты сгорания.


На профессиональном жаргоне эти топлива называют "вонючими" или "вонючками".

Можно с высокой степенью уверенности сказать, что если на РН стоят "вонючие" двигатели, то "до замужества" она была боевой ракетой (МБР, БРПЛ или ЗУР - что уже редкость) . Химия на службе и армии и гражданки.

Исключение, пожалуй, лишь РН Ariane - творение кооператива: Aérospatiale, Matra Marconi Space, Alenia, Spazio, DASA и др. Её миновала в "девичестве" подобная боевая участь.

Военные практически все перешли на РДТТ, как более удобные в эксплуатации. Ниша для "вонючих" топлив в космонавтике сузилась до использования в ДУ КА, где требуется долгое хранение без особых материальных или энергетических затрат.
Пожалуй, кратко обзор можно выразить графически:

Активно работают ракетчики и с метаном. Особых эксплуатационных трудностей нет: позволяет неплохо поднять давление в камере (до 40 М Па) и получить хорошие характеристики.
() и остальными природными газами (СПГ).

О прочих направления по повышению характеристик ЖРД (металлизация горючих, использование Не 2 , ацетама и прочем) я напишу позже. Если будет интерес.

Использование эффекта свободных радикалов-хорошая перспектива.
Детонационное горение-возможность для долгожданного прыжка на Марс.

Послесловие:

вообще все ракетные ТК (кроме НТК), а так же попытка изготовить их в домашних условиях- очень опасны. Предлагаю внимательно ознакомиться:
. Смесь, которую он готовил на плите в кастрюле, ожидаемо взорвалась. В итоге мужик получил огромное количество ожогов и провел в больнице пять дней.

Все домашние (гаражные) манипуляции с такими химическими компонентами чрезвычайно опасны, а порой и противозаконны. К местам их разлива без ОЗК и противогаза ЛУЧШЕ не подходить:

Как и с разлитой ртутью: звонить в МЧС, быстро приедут и всё профессионально подберут.

Всем спасибо, кто смог вытерпеть всё это до конца.

Первоисточники:
Качур П. И., Глушко А. В. "Валентин Глушко. Конструктор ракетных двигателей и космических систем", 2008.
Г.Г. Гахун "Конструкция и проектирование жидкостных ракетных двигателей", Москва, "Машиностроение, 1989.
Возможность увеличения удельного импульса жидкостного ракетного двигателя
при добавлении в камеру сгорания гелия С.А. Орлин МГТУ им. Н.Э. Баумана, Москва
М.С.Шехтер. "Топлива и рабочие тела ракетных двигателей", Машиностроение" 1976
Завистовский Д. И."Беседы о ракетных двигателях".
Филипп Терехов @lozga (www.geektimes.ru).
"Виды топлива и их характеристика.Топливо горючие вещества, используемые для получения тепла. Состав топлива Горючая часть - углерод С-водород Н-сера."-презентация Оксана Касеева
Факас С.С."Основы ЖРД. Рабочие тела"
Использованы фото и видеоматериалы с сайтов:

http://technomag.bmstu.ru
www.abm-website-assets.s3.amazonaws.com
www.free-inform.ru
www.rusarchives.ru
www.epizodsspace.airbase.ru
www.polkovnik2000.narod.ru
www.avia-simply.ru
www.arms-expo.ru
www.npoenergomash.ru
www.buran.ru
www.fsmedia.imgix.net
www.wikimedia.org
www.youtu.be
www.cdn.tvc.ru
www.commi.narod.ru
www.dezinfo.net
www.nasa.gov
www.novosti-n.org
www.prirodasibiri.ru
www.radikal.ru
www.spacenews.com
www.esa.int
www.bse.sci-lib.com
www.kosmos-x.net.ru
www.rocketpolk44.narod.ru
www.criotehnika.ru
www.трансавтоцистерна.рф
www.chistoprudov.livejournal.com/104041.html
www.cryogenmash.ru
www.eldeprocess.ru
www.chemistry-chemists.com
www.rusvesna.su
www.arms-expo.ru
www.armedman.ru
www.трансавтоцистерна.рф
www.ec.europa.eu
www.mil.ru
www.kbkha.ru
www.naukarus.com

Ни в коем случае не умаляем заслуг великого К.Э. Циолковского, но он все-таки был теоретиком ракетостроения. Мы же сегодня хотели бы упомянуть о человеке, первым построившем ракету на жидком топливе. И пусть эта ракета поднялась всего на 12 метров, но это был лишь первый маленький шажок человечества на длинной дороге к звездам.
16 марта исполнилось 90 лет с момента запуска первой в истории ракеты на жидком топливе. Подчеркнем, что имеется в виду именно первый «в истории» запуск. Вполне логично предположить, что со времен изобретения пороха китайцами, попыток запустить некие предметы в небо с помощью пороха или еще чего-либо было несть числа, однако о них сегодня мало что известно. Например, есть записи о том, что еще в 13-ом веке китайские инженеры использовали порох для отражения вражеских атак. Поэтому, отмечаем то, о чем знаем достоверно.
Сегодня запуском ракеты, будь она жидко- или твердотопливная, не удивить даже первоклассника, но 90 лет назад это было новшеством сродни открытию гравитационных волн сегодня. 16 марта 1926 года ракета на жидком топливе, представлявшем собой смесь бензина и кислорода, была запущена пионером ракетостроения американцем Робертом Годдардом.
На просторах Интернета мы нашли анимацию (ниже), на которой сотрудники Центра космических полетов Годдарда NASA отмечают 50-летие исторического испытательного полета маленькой ракеты в 1976 году.
Сотрудники центра, названного в честь Годдарда, собрались перед школьным автобусом в НАСА, наблюдая за запуском точной копии первой в мире ракеты на жидком топливе. Сегодня жидкотопливные ракеты используются в большинстве крупных космических запусков, от пилотируемых полетов до межпланетных миссий.
Однако первая ракета была совсем небольшой и летала невысоко. Но, несмотря на это, она ознаменовала собой большой прыжок в развитии ракетной техники.

Анимация запуска копии ракеты Роберта Годдарда по случаю 50-летия со дня первого запуска (16 марта 1976 года).
Фото: НАСА/Центр космических полетов Годдарда

Годдард верил в то, что будущее за жидким топливом. Такое топливо, например, обеспечивает больше тяги на единицу топлива и позволяет инженерам применять менее мощные насосы для подачи, благодаря большей плотности жидкости по сравнению с газами или тем же порохом. Однако Годдарду понадобилось целых 17 лет непрерывной работы, чтобы довести дело до первого запуска.
Годдард мечтал стать свидетелем первого межпланетного путешествия. Этого не произошло, он умер в 1945 году, но дело его жизни продолжается, потомки его детища покоряют космические тропы хотя и с переменным, но все-таки успехом.
Первый спутник был запущен Советским Союзом в 1957 году с помощью именно жидкотопливной ракеты. Жидкое топливо также использовалось для огромных ракет Сатурн V, которые доставляли астронавтов на Луну в 60-70-х годах. Жидкое топливо и сегодня предпочтительнее для пилотируемых миссий, так как его горением можно управлять, что безопаснее, чем использование твердого ракетного топлива.
Среди других на жидком топливе работают такие ракеты как европейская ракета-носитель «Ариан 5» (именно она выведет в космос телескоп Джеймс Вебб), российские «Союзы», Атлас V и Дельта от United Launch Alliance, а также Falcon 9 и SpaceX.
Годдарду принадлежат более 200 патентов на различные изобретения. Одна из его основных работ — многоступенчатые ракеты, которые в настоящее время являются основными «рабочими лошадками» космических программ всех стран.
При всех своих заслугах, как говорится в одном из сообщений НАСА, «США не признали в полной мере его (Годдарда) потенциал при жизни, некоторые из его идей о покорении космического пространства подвергались насмешкам. Но полет первой жидкотопливной ракеты является столь же значимым для космоса событием как первый полет братьев Райт для авиации, и даже 90 лет спустя его изобретения по-прежнему являются неотъемлемой частью космических технологий».

Включайся в дискуссию
Читайте также
Сонник поезд меня ждет. Предсказание сна Поезд. Толкование снов с поездом по разным сонникам
Приснилась авария, крушение или катастрофа?
К чему снятся переживания