Подпишись и читай
самые интересные
статьи первым!

Революция уже близко: ядерный синтез превращается в реальность. Термоядерный синтез впервые дал энергию

  • Перевод

Эта область называется теперь низкоэнергетическими ядерными реакциями, и в ней могут быть достигнуты настоящие результаты – или же она может оказаться упрямой мусорной наукой

Доктор Мартин Флейшман (справа), электрохимик, и Стэнли Понс, председатель химического отдела Университета Юты, отвечают на вопросы комитета по науке и технологиям по поводу их спорной работы в области холодного синтеза, 26 апреля 1989 года.

Говард Дж. Уилк – химик, специалист по синтетической органике, уже долгое время не работает по специальности и живёт в Филадельфии. Как и многие другие исследователи, работавшие в фармацевтической области, он стал жертвой сокращения НИОКР в лекарственной индустрии, происходящего в последние годы, и сейчас занимается подработками, не связанными с наукой. Обладая свободным временем, Уилк отслеживает прогресс компании из Нью-Джерси, Brilliant Light Power (BLP).

Это одна из тех компаний, что разрабатывают процессы, которые можно в общем обозначить как новые технологии добычи энергии. Это движение, по большей части, является воскрешением холодного синтеза – недолго существовавшего в 1980-х явления, связанного с получением ядерного синтеза в простом настольном электролитическом устройстве, которое учёные быстро отмели.

В 1991 году основатель BLP, Рэнделл Л. Миллс , объявил на пресс-конференции в Ланкастере (Пенсильвания) о разработке теории, по которой электрон в водороде может переходить из обычного, основного энергетического состояния, в ранее неизвестные, более устойчивые состояния с более низкой энергией, с высвобождением огромного количества энергии. Миллс назвал этот странный новый тип сжавшегося водорода, " " , и с тех пор работает над разработкой коммерческого устройства, собирающего эту энергию.

Уилк изучил теорию Миллса, прочёл работы и патенты, и провёл свои собственные вычисления для гидрино. Уилк даже посетил демонстрацию на территории BLP в Крэнбюри, Нью-Джерси, где обсудил гидрино с Миллсом. После этого Уилк всё ещё не может решить, является ли Миллс нереальным гением, бредящим учёным, или чем-то средним.

История началась в 1989 году, когда электрохимики Мартин Флейшман и Стэнли Понс сделали удивительное заявление на пресс-конференции Университета Юты о том, что они приручили энергию ядерного синтеза в электролитической ячейке.

Когда исследователи подавали электрический ток на ячейку, по их мнению, атомы дейтерия из тяжёлой воды, проникшие в палладиевый катод, вступали в реакцию синтеза и порождали атомы гелия. Избыточная энергия процесса превращалась в тепло. Флейшман и Понс утверждали, что этот процесс не может быть результатом ни одной известной химической реакции, и присовокупили к нему термин «холодный синтез».

После многих месяцев расследования их загадочных наблюдений, однако, научное сообщество пришло к соглашению о том, что эффект был нестабильным, или вообще отсутствовал, и что в эксперименте были допущены ошибки. Исследование забраковали, а холодный синтез стал синонимом мусорной науки.

Холодный синтез и производство гидрино – это святой Грааль для добычи бесконечной, дешёвой и экологически чистой энергии. Учёных холодный синтез разочаровал. Они хотели в него поверить, но их коллективный разум решил, что это было ошибкой. Частью проблемы было отсутствие общепринятой теории для объяснения предложенного явления – как говорят физики, нельзя верить эксперименту, пока он не подтверждён теорией.

У Миллса есть своя теория, но многие учёные не верят ей и считают гидрино маловероятным. Сообщество отвергло холодный синтез и игнорировало Миллса и его работу. Миллс поступал так же, стараясь не попадать в тень холодного синтеза.

А в это время область холодного синтеза поменяла имя на низкоэнергетические ядерные реакции (НЭЯР) , и существует дальше. Некоторые учёные продолжают попытки объяснить эффект Флейшмана-Понса. Другие отвергли ядерный синтез, но исследуют другие возможные процессы, способные объяснить избыточное тепло. Как и Миллс, их привлекли потенциальные возможности коммерческого применения. В основном их интересует добыча энергии для индустриальных нужд, домашних хозяйств и транспорта.

У небольшого числа компаний, созданных в попытках вывести новые энергетические технологии на рынок, бизнес-модели похожи на модели любого технологического стартапа: определить новую технологию, попытаться запатентовать идею, вызвать интерес инвесторов, получить финансирование, построить прототипы, провести демонстрацию, объявить даты поступления рабочих устройств в продажу. Но в новом энергетическом мире нарушение сроков – это норма. Никто пока ещё не совершил последнего шага с демонстрацией рабочего устройства.

Новая теория

Миллс вырос на ферме в Пенсильвании, получил диплом химика в колледже Франклина и Маршала, учёную степень по медицине в Гарвардском университете, и изучал электротехнику в Массачусетском технологическом институте. Будучи студентом, он начал разрабатывать теорию, которую он назвал "Большой объединённой теорией классической физики ", которая, по его словам, основана на классической физике и предлагает новую модель атомов и молекул, отходящую от основ квантовой физики.

Принято считать, что единственный электрон водорода шныряет вокруг его ядра, находясь на наиболее приемлемой орбите основного состояния. Просто невозможно придвинуть электрон водорода ближе к ядру. Но Миллс утверждает, что это возможно.

Сейчас он работает исследователем в Airbus Defence & Space, и говорит, что не отслеживал деятельность Миллса с 2007 года, поскольку в экспериментах не наблюдалось однозначных признаков избыточной энергии. «Сомневаюсь, что какие-либо более поздние эксперименты прошли научный отбор», сказал Ратке.

«Думаю, что в целом признано, что теория доктора Миллса, выдвинутая им в качестве основы его заявлений, противоречива и не способна выдавать предсказания,- продолжает Ратке. – Можно было бы спросить, "Могли ли мы так удачно наткнуться на источник энергии, который просто работает, следуя неверному теоретическому подходу?" ».

В 1990-х несколько исследователей, включая команду из Исследовательского центра Льюиса, независимо друг от друга сообщили о воспроизведении подхода Миллса и получении избыточного тепла. Команда НАСА в отчёте написала, что «результаты далеки от убедительных», и ничего не говорила про гидрино.

Исследователи предлагали возможные электрохимические процессы для объяснения тепла, включая неравномерность электрохимической ячейки, неизвестные экзотермические химические реакции, рекомбинацию разделённых атомов водорода и кислорода в воде. Те же аргументы приводили и критики экспериментов Флейшмана-Понса. Но команда из НАСА уточнила, что исследователи не должны отбрасывать это явление, просто на случай, если Миллс на что-то наткнулся.

Миллс очень быстро говорит, и способен вечно рассказывать о технических деталях. Кроме предсказания гидрино, Миллс утверждает, что его теория может идеально предсказать местоположение любого электрона в молекуле, используя специальный софт для моделирования молекул, и даже в таких сложных молекулах, как ДНК. С использованием стандартной квантовой теории учёным тяжело предсказать точное поведение чего-либо более сложного, чем атом водорода. Также Миллс утверждает, что его теория объясняет явление расширения Вселенной с ускорением, которое космологи ещё не до конца раскусили.

Кроме того, Миллс говорит, что гидрино появляются при сжигании водорода в звёздах, таких, как наше Солнце, и что их можно обнаружить в спектре звёздного света. Водород считается самым распространённым элементом во вселенной, но Миллс утверждает, что гидрино – это и есть тёмная материя, которую не могут найти во Вселенной. Астрофизики с удивлением воспринимают такие предположения: «Я никогда не слышал о гидрино», говорит Эдвард Колб [Edward W. (Rocky) Kolb ] из Чикагского университета, эксперт по тёмной вселенной .

Миллс сообщил об успешной изоляции и описании гидрино при помощи стандартных спектроскопических методов, таких, как инфракрасный, рамановский, и спектроскопия ядерно-магнитного резонанса. Кроме того, по его словам, гидрино могут вступать в реакции, приводящие к появлению новых типов материалов с «удивительными свойствами». Сюда входят проводники, которые, по словам Миллса, произведут революцию в мире электронных устройств и аккумуляторов.

И хотя его заявления противоречат общественному мнению, идеи Миллса кажутся не такими экзотическими по сравнению с другими необычными компонентами Вселенной. К примеру, мюоний – известная короткоживущая экзотическая сущность, состоящая из антимюона (положительно заряженной частицы, похожей на электрон) и электрона. Химически мюоний ведёт себя как изотоп водорода, но при этом в девять раз его легче.

SunCell, гидриновая топливная ячейка

Вне зависимости от того, в каком месте шкалы правдоподобности располагаются гидрино, Миллс уже десять лет назад рассказывал, что BLP уже продвинулась за пределы научного подтверждения, и её интересует лишь коммерческая сторона вопроса. С годами BLP собрала более $110 млн инвестиций.

Подход BLP к созданию гидрино проявлялся по-разному. В ранних прототипах Миллс с командой использовали вольфрам или никелевые электроды с электролитическим раствором лития или калия. Подводимый ток расщеплял воду на водород и кислород, и при нужных условиях литий или калий играли роль катализатора для поглощения энергии и коллапса электронной орбиты водорода. Энергия, возникающая при переходе из основного атомного состояния в состояние с более низкой энергией, выделялась в виде яркой высокотемпературной плазмы. Связанное с ней тепло затем использовалось для создания пара и питания электрогенератора.

Сейчас в BLP тестируют устройство SunCell , в котором водород (из воды) и оксид-катализатор подаются в сферический углеродный реактор с двумя потоками расплавленного серебра. Электрический ток, подаваемый на серебро, запускает плазменную реакцию с формированием гидрино. Энергия реактора улавливается углеродом, работающим в качестве «радиатора чёрного тела». Когда он раскаляется до тысяч градусов, то испускает энергию в виде видимого света, улавливаемого фотовольтаическими ячейками, преобразующими свет в электричество.

Касательно коммерческих разработок Миллс иногда выглядит, как параноик, а иногда – как практичный бизнесмен. Он зарегистрировал торговую марку «Hydrino». И поскольку его патенты заявляют об изобретении гидрино, BLP заявляют об интеллектуальной собственности на исследования гидрино. В связи с этим BLP запрещает другим экспериментаторам проводить даже базовые исследования гидрино, которые могут подтвердить или опровергнуть их существование, без предварительного подписания соглашения об интеллектуальной собственности. «Мы приглашаем исследователей, мы хотим, чтобы другие занимались этим,- говорит Миллс. – Но нам необходимо защищать нашу технологию».

Вместо этого Миллс назначил уполномоченных валидаторов, утверждающих, что могут подтвердить работоспособность изобретений BLP. Один из них – электротехник из Бакнеллского университета, профессор Питер М. Дженсон [Peter M. Jansson ], которому платят за оценку технологии BLP через его консалтинговую компанию Integrated Systems. Дженсон утверждает, что компенсация его времени «никаким образом не влияет на мои выводы как независимого исследователя научных открытий». Он добавляет, что «опроверг большую часть открытий», которые он изучал.

«Учёные из BLP занимаются настоящей наукой, и пока я не нашёл никаких ошибок в их методах и подходах,- говорит Дженсон. – С годами я видел много устройств в BLP, явно способных производить избыточную энергию в осмысленных количествах. Думаю, что научной общественности понадобится некоторое время для того, чтобы принять и переварить возможность существования низкоэнергетических состояний водорода. По моему мнению, работа доктора Миллса неоспорима». Дженсон добавляет, что BLP сталкивается со сложностями в коммерческом применении технологии, но препятствия носят деловой, а не научный характер.

А пока BLP провела несколько демонстраций своих новых прототипов для инвесторов с 2014 года, и опубликовала видеоролики на своём сайте. Но эти события не дают чётких доказательств того, что SunCell действительно работает.

В июле, после одной из демонстраций, компания объявила, что оценочная стоимость энергии из SunCell настолько мала – от 1% до 10% любой другой известной формы энергии – что компания «собирается предоставить автономные индивидуальные источники питания практически для всех стационарных и мобильных приложений, не привязанных к энергосети или топливным источникам энергии». Иначе говоря, компания планирует построить и выдавать в лизинг SunCells или другие устройства потребителям, взимая ежедневную плату, и позволяя им отвязываться от энергосетей и перестать покупать бензин или соляру, при этом расходуя в разы меньше денег.

«Это конец эры огня, двигателя внутреннего сгорания и централизованных систем подачи энергии,- говорит Миллс. – Наша технология сделает все остальные виды энергетических технологий устаревшими. Проблемы изменения климата будут решены». Он добавляет, что, судя по всему, BLP может начать выпуск продукции, для начала станций мощностью в МВт, к концу 2017 года.

Что в имени?

Несмотря на неопределённость, окружающую Миллса и BLP, их история – лишь часть общей саги о новой энергии. Когда после первоначального заявления Флейшмана-Понса улеглась пыль, два исследователя занялись изучением того, что правильно, а что нет. К ним присоединились десятки соавторов и независимых исследователей.

Многие из этих учёных и инженеров, часто работавших на собственные средства, интересовались не столько коммерческими возможностями, сколько наукой: электрохимией, металлургией, калориметрией, масс-спектрометрией, и ядерной диагностикой. Они продолжали ставить эксперименты, выдававшие избыточное тепло, определяемое как количество энергии, выдаваемое системой, по отношению к энергии, необходимой для её работы. В некоторых случаях сообщалось о ядерных аномалиях, таких, как появлении нейтрино, α-частиц (ядер гелия), изотопах атомов и трансмутациях одних элементов в другие.

Но в конечном итоге большинство исследователей ищут объяснение происходящему, и были бы счастливы, даже если бы скромное количество тепла оказалось бы полезным.

«НЭЯР находятся в экспериментальной фазе, и теоретически пока не поняты», говорит Дэвид Нагель [David J. Nagel ], профессор по электротехнике и информатике в Университете им. Джорджа Вашингтона, и бывший менеджер по исследованиям в Исследовательской лаборатории морфлота. «Некоторые результаты просто необъяснимы. Назовите это холодным синтезом, низкоэнергетическими ядерными реакциями, или как-то ещё – имён достаточно – мы всё равно ничего не знаем об этом. Но нет сомнений, что ядерные реакции можно запускать при помощи химической энергии».

Нагель предпочитает называть явление НЭЯР «решёточными ядерными реакциями», поскольку явление происходит в кристаллических решётках электрода. Изначальное ответвление этой области концентрируется на внедрении дейтерия в палладиевый электрод при помощи подачи большой энергии, поясняет Нагель. Исследователи сообщали, что такие электрохимические системы могут выдавать вплоть до 25 раз больше энергии, чем потребляют.

Другое основное ответвление области использует сочетания никеля и водорода, которое выдаёт до 400 раз больше энергии, чем потребляет. Нагель любит сравнивать эти НЭЯР-технологии с экспериментальным международным термоядерным реактором , основанным на хорошо известной физике – слиянии дейтерия и трития – который строят на юге Франции. Стоимость этого 20-летнего проекта составляет $20 млрд, и его цель в производстве энергии, превышающей потребляемую в 10 раз.

Нагель говорит, что область НЭЯР повсеместно растёт, и главные препятствия – это недостаток финансирования и нестабильные результаты. К примеру, некоторые исследователи сообщают, что для запуска реакции необходимо достичь некоего порогового значения. Она может потребовать минимального количества дейтерия или водорода для запуска, или же электроды необходимо подготовить, придав им кристаллографическую ориентацию и поверхностную морфологию. Последнее требование – обычное для гетерогенных катализаторов, используемых при очистке бензина и на нефтехимических производствах.

Нагель признаёт, что у коммерческой стороны НЭЯР тоже есть проблемы. Разрабатываемые прототипы, по его словам, «довольно грубые», и пока ещё не появилось компании, продемонстрировавшей работающий прототип или заработавшей на этом деньги.

E-Cat от Росси

Одна из ярких попыток поставить НЭЯР на коммерческие рельсы была сделана инженером из компании Leonardo Corp , находящейся в Майами. В 2011 году Росси с коллегами объявили на пресс-конференции в Италии о постройке настольного реактора «Энергетический катализатор» , или E-Cat, производящего избыточную энергию в процессе, где катализатором служит никель. Для обоснования изобретения Росси демонстрировал E-Cat потенциальным инвесторам и СМИ, и назначал независимые проверки .

Росси утверждает, что в его E-Cat происходит самоподдерживающийся процесс, в котором входящий электрический ток запускает синтез водорода и лития в присутствии порошковой смеси никеля, лития и алюмогидрида лития, в результате которого появляется изотоп бериллия. Короткоживущий бериллий распадается на две α-частицы, а избыточная энергия выделяется в виде тепла. Часть никеля превращается в медь. Росси говорит об отсутствии как отходов так и излучения вне аппарата.

Анонс Росси вызвал у учёных то же неприятное чувство, что и холодный синтез. Росси вызывает у многих людей недоверие из-за своего спорного прошлого. В Италии его обвинили в мошенничестве из-за его предыдущих деловых махинаций. Росси говорит, что эти обвинения остались в прошлом и не хочет обсуждать их. Также у него однажды был контракт на создание тепловых установок для ВС США, но поставленные им устройства не работали по спецификациям.

В 2012 году Росси объявил о создании системы мощностью в 1 МВт, пригодной для отопления больших зданий. Также он предполагал, что к 2013 году у него уже будет фабрика, ежегодно производящая миллион установок мощностью в 10 кВт и размером с ноутбук, предназначенных для домашнего использования. Но ни фабрики, ни этих устройств так и не случилось.

В 2014 году Росси продал технологию по лицензии компании Industrial Heat, открытой инвестиционной конторой Cherokee , занимающейся покупкой недвижимости и очищающей старые промзоны для новой застройки. В 2015 году генеральный директор Cherokee, Том Дарден , по образованию юрист и специалист по окружающей среде, назвал Industrial Heat «источником финансирования для изобретателей НЭЯР».

Дарден говорит, что Cherokee запустила Industrial Heat, поскольку в инвестиционной компании верят, что технология НЭЯР достойна исследований. «Мы были готовы ошибаться, мы готовы были вложить время и ресурсы, чтобы узнать, может ли эта область оказаться полезной в нашей миссии по предотвращению загрязнения [окружающей среды]», говорит он.

А в это время Industrial Heat и Leonardo поругались, и теперь судятся друг с другом по поводу нарушений соглашения. Росси получил бы $100 млн, если бы годовой тест его системы мощностью в 1 МВт оказался успешным. Росси говорит, что тест закончен, но в Industrial Heat так не считают, и опасаются, что устройство не работает.

Нагель говорит, что E-Cat привнёс в область НЭЯР энтузиазм и надежду. В 2012 году он утверждал, что, по его мнению, Росси не был мошенником, «но мне не нравятся некоторые его подходы к тестированию». Нагель считал, что Росси должен был действовать более аккуратно и прозрачно. Но в то время Нагель сам считал, что устройства на принципе НЭЯР появятся в продаже к 2013 году.

Росси продолжает исследования и объявил о разработках других прототипов. Но он мало что рассказывает о своей работе. Он говорит, что устройства мощностью в 1 МВт уже находятся в производстве, и он получил «необходимые сертификаты» для их продажи. Домашние устройства, по его словам, пока ещё ожидают сертификации.

Нагель говорит, что после спада радостного настроения, связанного с объявлениями Росси, к НЭЯР вернулся статус-кво. Доступность коммерческих генераторов НЭЯР отодвинулась на несколько лет. И даже если устройство выдержит проблемы воспроизводимости и будет полезным, его разработчикам предстоит жестокая битва с регуляторами и принятием его пользователями.

Но он сохраняет оптимизм. «НЭЯР могут стать коммерчески доступными ещё до их полного понимания, как было с рентгеном», говорит он. Он уже оборудовал лабораторию в Университете им. Джорджа Вашингтона для новых экспериментов с никелем и водородом.

Научные наследия

Многие исследователи, продолжающие работать над НЭЯР – это уже состоявшиеся учёные на пенсии. Для них это непросто, поскольку годами их работы возвращали непросмотренными из мейнстримовых журналов, а их предложения о докладах на научных конференциях не принимали. Они всё сильнее волнуются по поводу статуса этой области исследований, поскольку их время истекает. Им хочется либо зафиксировать своё наследие в научной истории НЭЯР, либо хотя бы успокоиться тем, что их инстинкты их не подвели.

«Очень неудачно вышло, когда холодный синтез впервые был опубликован в 1989 году как новый источник энергии синтеза, а не просто как некая новая научная диковина», говорит электрохимик Мелвин Майлс . «Возможно, исследования могли бы идти как обычно, с более аккуратным и точным изучением».

Бывший исследователь в Центре воздушно-морских исследований на базе Чайна Лейк, Майлс иногда работал с Флейшманом, умершим в 2012 году. Майлс считает, что Флейшман и Понс были правы. Но и сегодня он не знает, как можно сделать коммерческий источник энергии для системы из палладия и дейтерия, несмотря на множество экспериментов, в ходе которых было получено избыточное тепло, коррелирующее с получением гелия.

«Зачем кто-то будет продолжать исследования или интересоваться темой, которую 27 лет назад объявили ошибкой? – спрашивает Майлс. – Я убеждён, что холодный синтез когда-нибудь признают ещё одним важным открытием, которое долго принимали, и появится теоретическая платформа, объясняющая результаты экспериментов».

Ядерный физик Людвик Ковальский, почётный профессор из Монтклэрского государственного университета соглашается, что холодный синтез стал жертвой неудачного старта. «Я достаточно стар, чтобы помнить эффект, произведённый первым объявлением на научное сообщество и на общественность», говорит Ковальский. Временами он сотрудничал с исследователями НЭЯР, «но мои три попытки подтвердить сенсационные заявления были неудачными».

Ковальский считает, что первый позор, заработанный исследованием, вылился в бОльшую проблему, неподобающую для научного метода . Справедливы или нет исследователи НЭЯР, Ковальский всё ещё считает, что стоит докопаться до чёткого вердикта «да» или «нет». Но его не найти до тех пор, пока исследователей холодного синтеза считают «эксцентричными псевдоучёными», говорит Ковальский. «Прогресс невозможен, и никто не выигрывает от того, что результаты честных исследований не публикуются, и никто не проверяет их независимо в других лабораториях».

Время покажет

Даже если Ковальский получит однозначный ответ на свой вопрос и заявления исследователей НЭЯР подтвердятся, дорога к коммерциализации технологии будет полна препятствий. Многие стартапы, даже с надёжной технологией, проваливаются по причинам, не связанным с наукой: капитализация, движение ликвидности, стоимость, производство, страховка, неконкурентноспособные цены, и т.п.

Возьмём, к примеру, Sun Catalytix. Компания вышла из MIT при поддержке твёрдой науки, но пала жертвой коммерческих атак до того, как вышла на рынок. Она была создана для коммерциализации искусственного фотосинтеза, разработанного химиком Дэниелом Носерой [Daniel G. Nocera ], работающим ныне в Гарварде, для эффективного преобразования воды в водородное топливо при помощи солнечного света и недорогого катализатора.

Носера мечтал , что полученный таким образом водород сможет питать простые топливные ячейки и давать энергию домам и деревням в отсталых регионах мира, не имеющих доступа к энергосетям, и давая им возможность наслаждаться современными удобствами, улучшающими уровень жизни. Но на разработку потребовалось гораздо больше денег и времени, чем казалось сначала. Через четыре года Sun Catalytix бросила попытки коммерциализации технологии, занялась изготовлением потоковых батарей , и потом в 2014 году её купила Lockheed Martin.

Неизвестно, тормозят ли развитие компаний, занимающихся НЭЯР, такие же препятствия. К примеру, Уилк, органический химик, следивший за прогрессом Миллса, озабочен желанием понять, основаны ли попытки коммерциализации BLP на чем-то реальном. Ему просто нужно знать, существует ли гидрино.

В 2014 Уилк спросил Миллса, изолировал ли тот гидрино, и хотя Миллс уже писал в работах и патентах, что ему это удалось, он ответил, что такого ещё не было, и что это было бы «очень большой задачей». Но Уилку кажется иное. Если процесс создаёт литры гидринного газа, это должно быть очевидным. «Покажите нам гидрино!», требует Уилк.

Уилк говорит, что мир Миллса, и вместе с ним мир других людей, занимающихся НЭЯР, напоминает ему один из парадоксов Зенона, который говорит об иллюзорности движения. «Каждый год они преодолевают половину расстояния до коммерциализации, но доберутся ли они до неё когда-нибудь?». Уилк придумал четыре объяснения для BLP: расчёты Миллса верны; это мошенничество; это плохая наука; это патологическая наука, как называл её нобелевский лауреат по физике Ирвинг Ленгмюр.

Ленгмюр изобрёл этот термин более 50 лет назад для описания психологического процесса, в котором учёный подсознательно отдаляется от научного метода и так погружается в своё занятие, что вырабатывает невозможность объективно смотреть на вещи и видеть, что реально, а что нет. Патологическая наука – это «наука о вещах, не таких, какими они кажутся», говорил Ленгмюр. В некоторых случаях она развивается в таких областях, как холодный синтез/НЭЯР, и никак не сдаётся, несмотря на то, что признаётся ложной большинством учёных.

«Надеюсь, что они правы», говорит Уилк про Миллса и BLP. «В самом деле. Я не хочу их опровергать, я просто ищу истину». Но если бы «свиньи умели летать», как говорит Уилкс, он бы принял их данные, теорию и другие предсказания, следующие из неё. Но он никогда не был верующим. «Думаю, если бы гидрино существовали, их бы обнаружили в других лабораториях или в природе много лет назад».

Все обсуждения холодного синтеза и НЭЯР заканчиваются именно так: они всегда приходят к тому, что никто не выпустил на рынок работающего устройства, и ни один из прототипов в ближайшем будущем нельзя будет поставить на коммерческие рельсы. Так что время будет последним судьёй.

Теги:

  • холодный синтез
  • нэяр
  • низкоэнергетические ядерные реакции
  • suncell
  • росси
  • e-cat
Добавить метки

Холодный также может называться холодным термоядом. Его суть заключается в возможности реализации ядерной реакции синтеза, происходящей в каких-либо химических системах. При этом предполагается отсутствие значительного перегрева рабочего вещества. Как известно, обычные при их проведении создают температуру, которая может измеряться миллионами градусов Кельвина. Холодный термояд в теории не требует такой высокой температуры.

Многочисленные исследования и эксперименты

Исследование холодного ядерного синтеза, с одной стороны, считается чистым мошенничеством. Никакие другие научные направления в этом с ним не сравнимы. С другой стороны, возможно, что эта сфера науки до конца не изучена, и вовсе не может считаться утопией, а тем более мошенничеством. Однако в истории развития холодного термояда все же присутствовали если не обманщики, то наверняка сумасшедшие.

Признанию псевдонаукой этого направления и поводом для критики, которой подверглась технология холодного ядерного синтеза, послужили многочисленные неудачи ученых, работавших в этой области, а также произведенные отдельными личностями фальсификации. Уже с 2002 года большинство ученых считают, что работа по решению этого вопроса бесперспективна.

Вместе с тем некоторыми все же попытки провести подобную реакцию продолжаются. Так, в 2008 году японский ученый из университета Осаки публично продемонстрировал эксперимент, совершенный с электрохимической ячейкой. Это был Йошиаки Арата. После такой демонстрации научное общество вновь стало вести разговоры о возможности или невозможности холодного термояда, которые может предоставить ядерная физика. Отдельные ученые, квалифицирующиеся на ядерной физике и химии, занимаются поиском обоснований этого явления. Причем делают это они с целью найти не ядерное ему объяснение, а другое, альтернативное. Вдобавок это еще обусловлено и тем, что сведения о нейтронном излучении отсутствуют.

История Флэйшмана и Понса

Уже сама история обнародования этой разновидности научного направления в глазах мирового сообщества является подозрительной. Все началось 23 марта 1989 года. Именно тогда профессор Мартин Флэйшман со своим напарником Стэнли Понсом собрали пресс-конференцию, которая проходила в университете, где трудились химики, в штате Юта (США). Тогда они и заявили, что ими была осуществлена реакция холодного ядерного синтеза путем обыкновенного пропускания электрического тока сквозь электролит. По словам химиков, в результате проведенной реакции они смогли получить положительный энергетический выход, то есть тепло. Кроме этого, они наблюдали ядерное излучение, возникшее в результате реакции и идущее от электролита.

Сделанное заявление буквально произвело настоящий фурор в научном сообществе. Конечно же, низкотемпературный ядерный синтез, произведенный на простом письменном столе, мог кардинально изменить весь мир. Больше не нужны комплексы огромных химических установок, которые еще и стоят громадную сумму денег, а результат в виде получения нужной реакции когда наступит - неизвестно. Если бы все подтвердилось, Флэйшмана и Понса ждало бы потрясающее будущее, а человечество - немалое сокращение расходов.

Однако сделанное таким образом заявление химиков стало их ошибкой. И, кто знает, возможно, самой главной. Дело в том, что в научном сообществе не принято делать какие-либо заявления перед средствами массовой информации о своих изобретениях или открытиях до того, как сведения о них будут опубликованы в специальных научных журналах. Ученые, поступающие так, мгновенно получают критику в свой адрес, это считается своего рода дурным тоном в научной среде. По правилам, сделавший какое-либо открытие научный сотрудник негласно обязан оповестить об этом сначала научное сообщество, которое и будет решать, действительно ли это изобретение является истинным, стоит ли его вообще признавать открытием. С юридической стороны это считается обязательством полного сохранения тайны о происшедшем, которую первооткрыватель должен соблюдать с момента подачи своей статьи в издание и до момента ее опубликования. Ядерная физика в этом плане не является исключением.

Флэйшман со своим коллегой такую статью направили в научный журнал, который назывался Nature и являлся самым авторитетным научным изданием в масштабах всего мира. Все люди, связанные с наукой, знают, что такой журнал не опубликует непроверенную информацию, а тем более не станет печатать кого попало. Мартин Флэйшман уже в то время считался достаточно уважаемым ученым, работающим в области электрохимии, поэтому поданная статья должна была выйти в скором времени. Так и произошло. Спустя три месяца после злополучной конференции публикация вышла в свет, но ажиотаж вокруг открытия уже вовсю разгорелся. Возможно, поэтому главный редактор Nature Джон Мэддокс уже в следующем ежемесячном выпуске журнала опубликовал свои сомнения по поводу сделанного открытия Флэйшмана и Понса и того, что ими была получена энергия ядерной реакции. В своей заметке он написал, что химики должны понести наказание за его преждевременное обнародование. Там же им было сказано о том, что настоящие ученые никогда бы не позволили придать общественной огласке свои изобретения, а лица, которые так поступают, могут считаться простыми авантюристами.

Спустя некоторое время Понсу и Флэйшману был нанесен еще один удар, который можно назвать сокрушительным. Ряд научных сотрудников из американских научных институтов Соединенных Штатов (Массачусетский и Калифорнийский технологические университеты) провели, то есть повторили эксперимент химиков, создав одинаковые условия и факторы. Однако к заявленному Флэйшманом результату это не привело.

Возможно или невозможно?

С того времени произошло четкое разделение всего научного сообщества на два лагеря. Сторонники одного убеждали всех, что холодный термояд - это выдумка, которая ни на чем не основана. Другие же, напротив, до сих пор уверены, что холодный ядерный синтез возможен, что злополучные химики все же совершили открытие, которое в конце концов может спасти все человечество, дав ему неисчерпаемый источник энергии.

Тот факт, что если все же произойдет изобретение нового метода, с помощью которого будут возможны холодные ядерные реакции синтеза, и, соответственно, значение такого открытия будет неоценимо для всех людей в глобальном масштабе, привлекает к этому научному направлению все новых и новых ученых, часть из которых в действительности могут считаться мошенниками. Целые государства прилагают значительные усилия по постройке всего лишь одной термоядерной станции, затрачивая при этом огромные суммы денежных средств, а холодный термояд способен извлекать энергию абсолютно простыми и довольно недорогими способами. Именно это и привлекает желающих нажиться обманным путем, а также и других лиц, имеющих психические расстройства. Среди приверженцев этого способа получения энергии можно отыскать и тех и других.

История с холодным термоядом просто обязана была попасть в архив так называемых лженаучных историй. Если посмотреть на метод, с помощью которого получается энергия ядерного синтеза, трезвым взглядом, то можно понять, что для соединения двух атомов в один требуется огромное количество энергии. Она необходима для преодоления электрического сопротивления. В строящемся на данный момент Международном который будет располагаться в г. Карадаш во Франции, планируется проводить соединение двух атомов, которые являются наилегчайшими из существующих в природе. В результате такого соединения ожидается положительный выброс энергии. Эти два атома - тритий и дейтерий. Они являются изотопами водорода, поэтому ядерный синтез водорода будет основой. Чтобы осуществить подобное соединение, необходима немыслимая температура - сотни миллионов градусов. Конечно же, для этого понадобится и огромное давление. По этой причине многие ученые и считают, что холодный управляемый ядерный синтез невозможен.

Успехи и неудачи

Однако в оправдание этого рассматриваемого синтеза следует отметить, что среди его поклонников имеются не только люди с бредовыми идеями и мошенники, но и вполне нормальные специалисты. После выступления Флэйшмана и Понса и провала их открытия множество ученых и научных институтов продолжали заниматься этим направлением. Не обошлось здесь и без российских специалистов, которые тоже предпринимали соответствующие попытки. И самое интересное в том, что подобные эксперименты в некоторых случаях заканчивались успехом, а в некоторых - неудачей.

Однако в науке все строго: если произошло открытие, и эксперимент прошел удачно, то он обязан быть повторен вновь с положительным результатом. Если это не так, такое открытие не будет никем признано. Более того, повторение удачного эксперимента не могли сделать и сами исследователи. В одних случаях это у них получалось, в других - нет. Из-за чего это происходит, никто объяснить не мог, до сих пор отсутствует научно обоснованная причина такой непостоянности.

Настоящий изобретатель и гений

У всей вышеописанной истории с Флэйшманом и Понсом есть другая сторона медали, а точнее, тщательно скрываемая западными странами истина. Дело в том, что Стэнли Понс ранее был гражданином СССР. В 1970 году он входил в экспертный состав, разрабатывающий термоэмиссионные установки. Конечно, Понс был посвящен во многие секреты советского государства и, эмигрировав в Соединенные Штаты, попытался их реализовать.

Истинным первооткрывателем, добившимся определенных успехов в холодном ядерном синтезе, был Иван Степанович Филимоненко.

И. С. Филимоненко умер в 2013 году. Он являлся ученым, который чуть не остановил все развитие атомной энергетики не только в своей стране, но и во всем мире. Именно он едва не создал установку ядерного холодного синтеза, которая, в отличие от была бы более безопасной и очень дешевой. Помимо указанной установки, советский ученый создал летательный аппарат, основанный на принципе антигравитации. Был известен как разоблачитель скрываемых опасностей, которые может принести человечеству атомная энергетика. Ученый работал в оборонном комплексе СССР, являлся академиком и экспертом по Примечательно, что некоторые труды академика, в том числе и холодный ядерный синтез Филимоненко, до сих пор засекречены. Иван Степанович был непосредственным участником создания водородной, ядерной и нейтронной бомб, занимался разработкой ядерных реакторов, предназначенных для запуска ракет в космос.

В 1957 году Иван Филимоненко разработал энергетическую установку холодного ядерного синтеза, с помощью которой страна смогла бы сэкономить до трехсот миллиардов долларов в год, применив ее в энергетике. Это изобретение ученого изначально было всецело поддержано государством, а также такими известными научными сотрудниками, как Курчатов, Келдыш, Королев. Дальнейшие разработки и доведение изобретения Филимоненко до готового состояния санкционировал в то время сам маршал Жуков. Открытие Ивана Степановича являлось источником, из которого должна была извлекаться чистая ядерная энергия, а кроме этого, с ее помощью можно было бы получить защиту от ядерных излучений и устранить последствия радиоактивного загрязнения.

Отстранение Филимоненко от работы

Возможно, что спустя какое-то время изобретение Ивана Филимоненко производилось бы в промышленных масштабах, а человечество избавилось бы от многих проблем. Однако судьба в лице некоторых людей распорядилась иным образом. Его коллеги Курчатов и Королев скончались, а маршал Жуков ушел в отставку. Это и послужило началом так называемой подковерной игры в научных кругах. Результатом стала остановка всех работ Филимоненко, а в 1967 году произошло и его увольнение. Дополнительная причина такого обращения с заслуженным ученым стала и его борьба за прекращение испытаний ядерного оружия. Своими работами он постоянно доказывал наносимый вред и природе, и непосредственно людям, с его подачи были остановлены многие проекты по запуску в космос ракет с ядерными реакторами (любая авария на такой ракете, происшедшая на орбите, могла грозить радиоактивным заражением всей Земли). Учитывая гонку вооружений, набирающую в то время обороты, академик Филимоненко стал неугодным некоторым высоким лицам. Его экспериментальные установки признаются противоречащими законам природы, самого ученого увольняют, исключают из коммунистической партии, лишают всех званий и вообще объявляют психически ненормальным человеком.

Уже в конце восьмидесятых - начале девяностых работы академика возобновляются, разрабатываются новые экспериментальные установки, однако все они до положительного результата доведены не были. Иваном Филимоненко была предложена идея использования его передвижной установки с целью ликвидации последствий в Чернобыле, но она была отвергнута. В период с 1968 по 1989 годы Филимоненко был отстранен от каких-либо испытаний и работ в направлении холодного термояда, а сами разработки, схемы и чертежи вместе с некоторыми советскими научными сотрудниками попали за рубеж.

В начале 90-х годов Соединенные Штаты заявили об успешных испытаниях, при которых ими якобы была получена ядерная энергия в результате холодного термояда. Это послужило толчком к тому, что о легендарном советском ученом вновь вспомнило его государство. Он был восстановлен в должности, но и это не помогло. К тому времени начался распад СССР, финансирование было ограниченным, соответственно, и результатов не было. Как рассказал позже Иван Степанович в интервью, видя непрекращающиеся и вместе с тем неудачные попытки многих ученых со всего мира получить положительные результаты холодного ядерного синтеза, он понял, что без него никто не сможет довести дело до конца. И, действительно, он говорил правду. С 1991 по 1993 год американские ученые, заполучившие установку Филимоненко, так и не смогли понять принцип ее действия, а еще спустя год и вовсе демонтировали ее. В 1996 году влиятельные люди из Соединенных Штатов предлагали Ивану Степановичу сто миллионов долларов только за то, чтобы он предоставил им консультации, разъяснив, как работает реактор холодного ядерного синтеза, на что тот ответил отказом.

Иван Филимоненко путем экспериментов установил, что в результате разложения так называемой тяжелой воды путем электролиза она распадается на кислород и дейтерий. Последний, в свою очередь, растворяется в палладии катода, в котором развиваются ядерные реакции синтеза. В процессе происходящего Филимоненко зафиксировал отсутствие как радиоактивных отходов, так и нейтронного излучения. Помимо этого, в итоге своих экспериментов Иван Степанович установил, что его реактор ядерного синтеза испускает неопределенное излучение, и именно это излучение сильно уменьшает период полураспада радиоактивных изотопов. То есть нейтрализуется радиоактивное загрязнение.

Существует мнение, что Филимоненко в свое время отказался от замены ядерных реакторов своей установкой в подземных убежищах, подготовленных для высших руководителей СССР на случай ядерной войны. В те времена бушевал Карибский кризис, а потому была очень высока возможность ее начала. Останавливало правящие круги и США, и СССР лишь то, что в таких подземных городах загрязнение от ядерных реакторов все равно бы убило все живое спустя несколько месяцев. Задействованный реактор холодного ядерного синтеза Филимоненко мог бы создать зону безопасности от радиоактивного загрязнения, поэтому, если бы академик согласился на такое, то вероятность ядерной войны могла быть увеличена в несколько раз. Если это было действительно так, то лишение его всех наград и дальнейшие репрессии находят свое логическое обоснование.

Теплый ядерный синтез

И. С. Филимоненко была создана термоэмиссионная гидролизная энергетическая установка, которая являлась абсолютно экологически чистой. По настоящее время никто так и не смог создать подобный аналог ТЭГЭУ. Суть этой установки и одновременно отличие от других подобных агрегатов заключалось в том, что в ней применялись не ядерные реакторы, а установки ядерного синтеза, происходящего при средней температуре 1150 градусов. Поэтому такое изобретение и было названо установкой теплого ядерного синтеза. В конце восьмидесятых годов под столицей, в городе Подольске, было создано 3 таких установки. Советский академик Филимоненко принимал в этом непосредственное участие, руководя всем процессом. Мощность каждой ТЭГЭУ составляла 12,5 кВт, в качестве основного топлива использовалась тяжелая вода. Всего один ее килограмм при реакции выделял энергию, эквивалентную той, которую можно получить при сжигании двух миллионов килограммов бензина! Одно это говорит об объемности и значимости изобретений великого ученого, о том, что разрабатываемые им холодные ядерные реакции синтеза могли принести требуемый результат.

Таким образом, в настоящее время доподлинно не известно, имеет ли право на существование холодный термояд или нет. Вполне возможно, что если бы не репрессии в отношении настоящего гения науки Филимоненко, то мир сейчас был бы уже не таким, а продолжительность жизни людей могла увеличиться многократно. Ведь еще тогда Иван Филимоненко заявлял, что радиоактивное излучение - причина старения людей и скорой смерти. Именно радиация, которая сейчас есть буквально везде, не говоря уже о мегаполисах, нарушает хромосомы человека. Может быть, поэтому библейские персонажи и жили по тысяче лет, так как в то время наверняка этого губительного излучения не существовало.

Созданная академиком Филимоненко установка в перспективе могла бы избавить планету от подобных убивающих загрязнений, вдобавок предоставив неисчерпаемый источник дешевой энергии. Так это или нет, покажет время, однако жаль, что это время уже могло бы наступить.

Масса представляет собой особую форму энергии, о чем и свидетельствует известная формула Эйнштейна E = mc 2 . Из нее следует возможность преобразования массы в энергию и энергии в массу. И такие реакции на внутриатомном уровне вещества реально имеют место. В частности, часть массы атомного ядра может превращаться в энергию, и происходит это двумя путями. Во-первых, крупное ядро может распасться на несколько мелких — такой процесс называется реакцией распада . Во-вторых, несколько более мелких ядер могут объединиться в одно более крупное — это так называемая реакция синтеза . Реакции ядерного синтеза во Вселенной распространены очень широко — достаточно упомянуть, что именно из них черпают энергию звезды. Ядерный распад сегодня служит одним из основных источников энергии для человечества — он используется на атомных электростанциях. И при реакции распада, и при реакции синтеза совокупная масса продуктов реакции меньше совокупной массы реагентов. Эта-то разница в массе и преобразуется в энергию по формуле E = mc 2 .

Распад

В природе уран встречается в форме нескольких изотопов, один из которых — уран-235 (235 U) — самопроизвольно распадается с выделением энергии. В частности, при попадании достаточно быстрого нейтрона в ядро атома 235 U последнее распадается на два крупных куска и ряд мелких частиц, включая, обычно, два или три нейтрона. Однако сложив массы крупных фрагментов и элементарных частиц, мы недосчитаемся определенной массы по сравнению с массой исходного ядра до его распада под воздействием удара нейтрона. Эта-то недостающая масса и выделяется в виде энергии, распределенной среди получившихся продуктов распада — прежде всего, кинетической энергии (энергии движения). Стремительно движущиеся частицы разлетаются от места распада и сталкиваются с другими частицами вещества, разогревая их.

Они представляют собой стремительно разлетающиеся от места распада частицы, при этом далеко они не улетают, врезаясь в соседние атомы вещества и разогревая их. Таким образом, энергия, порождаемая ядерным распадом, преобразуется в теплоту окружающего вещества.

В уране, добываемом из природной урановой руды, изотопа урана-235 содержится всего 0,7% от общей массы урана — остальные 99,3% приходятся на долю относительно устойчивого (слабо радиоактивного) изотопа 238 U, который просто поглощает свободные нейтроны, не распадаясь под их воздействием. Поэтому для использования урана в качестве топлива в ядерных реакторах его нужно предварительно обогатить — то есть довести содержание радиоактивного изотопа 235 U до уровня не менее 5%.

После этого уран-235 в составе обогащенного природного урана в атомном реакторе распадается под воздействием бомбардировки нейтронами. В результате из одного ядра 235 U выделяется в среднем 2,5 новых нейтрона, каждый из которых вызывает распад еще 2,5 ядер, и запускается так называемая цепная реакция. Условием для продолжения незатухающей реакции распада урана-235 является превышение числа выделяемых распадающимися ядрами нейтронов числа нейтронов, покидающих урановый конгломерат; в этом случае реакция продолжается с выделением энергии.

В атомной бомбе реакция носит умышленно неконтролируемый характер, в результате чего за доли секунды распадается огромное число ядер 235 U и выделяется колоссальная по своей разрушительности взрывная энергия. В атомных реакторах, используемых в энергетике, реакцию распада необходимо строго контролировать с целью дозирования выделяемой энергии. Хорошим поглотителем нейтронов является кадмий — его-то обычно и используют для управления интенсивностью распада в реакторах АЭС. Кадмиевые стержни погружают в активную зону реактора до уровня, необходимого для снижения скорости выделения свободной энергии до технологически разумных пределов, а в случае падения энерговыделения ниже необходимого уровня частично выводят стержни из активной зоны реакции, после чего реакция распада интенсифицируется до необходимого уровня. Выделившаяся тепловая энергия затем в обычном порядке (посредством турбогенераторов) преобразуется в электрическую.

Синтез

Термоядерный синтез — реакция прямо противоположная реакции распада по своей сути: более мелкие ядра объединяются в более крупные. Самая распространенная во Вселенной реакция вообще — это реакция термоядерного синтеза ядер гелия из ядер водорода: она непрерывно протекает в недрах практически всех видимых звезд. В чистом виде она выглядит так: четыре ядра водорода (протона) образуют атом гелия (2 протона + 2 нейтрона) с выделением ряда других частиц. Как и в случае реакции распада атомного ядра совокупная масса образовавшихся частиц оказывается меньше массы исходного продукта (водорода) — она и выделяется в виде кинетической энергии частиц-продуктов реакции, за счет чего звезды и разогреваются.

В недрах звезд реакция термоядерного синтеза происходит не единовременно (когда сталкиваются 4 протона), а в три этапа. Сначала из двух протонов образуется ядро дейтерия (один протон и один нейтрон). Затем, после попадания в ядро дейтерия еще одного протона, образуется гелий-3 (два протона и один нейтрон) плюс другие частицы. И наконец, два ядра гелия-3 сталкиваются, образуя гелий-4, два протона, а также другие частицы. Однако по совокупности эта трехэтапная реакция дает чистый эффект образования из четырех протонов ядра гелия-4 с выделением энергии, уносимой быстрыми частицами, прежде всего фотонами (см. Эволюция звезд).

Естественная реакция термоядерного синтеза происходит в звездах; искусственная — в водородной бомбе. Увы, человек до сих пор не сумел найти средств для того, чтобы направить термоядерный синтез в управляемое русло и научиться получать за счет него энергию для использования в мирных целях. Однако ученые не теряют надежды на достижение положительных результатов в области получения «мирной и дешевой» термоядерной энергии уже в обозримом будущем — для этого главное научиться удерживать высокотемпературную плазму либо посредством лазерных лучей, либо посредством сверхмощных тороидальных электромагнитных полей (см.

Рис. 25. Положение rp -процесса относительно линииβ стабильности.

Процесс, который временами связан с р -процессом, естьrp - процесс – быстрый процесс захвата протона. Этот процесс создаёт протонами обогащённые ядра с Z =7-26. Он включает серию (р,γ) иβ + - распадов, которые характерны для р-обогащённых ядер. Процесс стартует как «выпадение» из CNO цикла. Это - боковая цепь CNO-цикла, создающая р-обогащённые ядра, такие как21 Na

и 19 Ne. Эти ядра создают основу для дальнейшего захвата

нейтронов, приводя к пути нуклеосинтеза, показанному на Рис. 25 . rp -процесс создаёт малое число ядер сА <100. Процесс следует по пути, аналогичному r -процессу, но на протон-обогащённой стороне стабильности. В настоящее время источником протонов

для этого процесса являются некоторые двойные звёзды. Заметим, что этот процесс временами близок к линии β стабильности, приближаясь к протоновой линии, когда ядро становится тяжелее.

6. ПРОБЛЕМА СОЛНЕЧНОГО НЕЙТРИНО

Многие ядерные реакции, обеспечивающие звёзды энергией, сопровождаются эмиссией нейтрино. Ввиду малого сечения поглощения нейтрино веществом (σ 10-44 см2 ), они практически не поглощаются Солнцем и другими звёздами. (Эти потери нейтрино соответствуют потери 2% энергии Солнца). Поэтому нейтрино – окно внутрь звезды. В тоже время, малое сечение поглощения затрудняет регистрацию нейтрино, поскольку практически все нейтрино проходят планету Земля без поглощения.

Поэтому существует проблема солнечного нейтрино. Табл. 4. Предсказанные потоки солнечного нейтрино.

Источник

Поток (част/с/см2 )

5,94x1010

1,40x108

7,88x103

4,86x107

5,82x106

5,71x108

5,03x108

5,91x106

6.1 Ожидаемые источники солнечного нейтрино, энергии и потоки

В виду своей близости к нашей планете, Солнце – основной источник достигающего Земли нейтрино.

Солнце испускает 1,8х1038 нейтрино/сек, которые через 8 мин достигают поверхности Земли с плотностью потока 6,4х1010 нейтрино/с/см2 . Предсказания стандартной солнечной модели для потоков нейтрино на поверхности Земли для различных ядерных реакций представлены вТабл. 4, а для распределения энергий - наРис. 26 . Каждая ядерная реакция имеет

характеристическое распределение энергии.

Рис. 25. Предсказание потоков нейтрино от различных ядерных реакций на Солнце. Области энергий, в которых детекторы чувствительны к нейтрино, показаны наверху.

13N → 13C+ β ++ ν e 15O → 15N+ β ++ ν e 17F → 17O+ β ++ ν e

Источник, помеченный «рр », вТабл. 4 иРис. 26 отражает реакцию

p+p→ d+e+ +ν e (65)

и является основной реакцией, производящей одно нейтрино на каждое синтезированное ядро 4 Не. «рер » источником является реакция

p+p+e- → d+ν e , (66)

которая производит моноэнергетические нейтрино, тогда как «hep» означает реакцию: p+3 He→ 4 He+e+ +ν e (67)

Эта последняя реакция производит нейтрино наивысшей энергии с максимальной энергией 18,77 МэВ (из-за высокого значенияQ реакции). Интенсивность этого источника в 107 раз меньше рр-источника. «7 Ве» источник означает рр -цепь реакции распада электронным захватом

в котором заселено первое возбуждённое состояние 8 Ве (при 3,04 МэВ). Слабые источники «13 N», «15 O» и «17 F» означаютβ + распады, происходящие в CNO цикле:

6.2 Детектирование нейтрино

Как уже упоминалось, детектирование слабо взаимодействующих нейтрино затруднено ввиду низкого значения сечения взаимодействия. Для преодоления этого препятствия предложено два типа детекторов: радиохимические детекторы и детекторы Черенкова. Радиохимические детекторы регистрируют продукты вызванных нейтрино реакций, тогда как Черенковские детекторы наблюдают рассеяние нейтрино. Так, в пещере Южной Дакоты на 1500 м ниже поверхности земли помещён массивный радиохимический детектор, содержащий 100000 галлонов очищенной жидкости, С2 Сl4 . Очищенная жидкость весила 610 тонн (объём 10 железнодорожных цистерн). В детекторе происходит следующая реакция:

ν e +37 Cl→ 37 Ar+e-

Продукт реакции 37 Ar распадается электронным захватом с Т=35 дней. После очистки жидкость экспонируется солнечным нейтрино определённый период времени, образовавшийся37 Ar вымывается из детектора потоком газообразного гелия и поступает в пропорциональный счётчик, который детектирует 2,8 электроны Оже, образовавшиеся при электронном захвате. Детектируемая реакция имеет порог 0,813 МэВ, т.е. детектор чувствителен к8 В, hep, pep и7 Be (распад основного состояния) нейтрино. Здесь наиболее важным является регистрация8 В. Обычно 3 атома37 Аr образуются за неделю и их надо изолировать от 1010 атомов жидкости. Детектор помещён глубоко под землёй и защищён от космической радиации.

Другие детекторы основаны на реакции

ν e +71 Ga→ 71 Ge+e-

Эти детекторы имеют порог 0,232 МэВ и могут быть использованы для прямого детектирования доминирующих рр нейтрино Солнца. Галлий присутствует как раствор GaCl3 .71 Ge собирают, промывая детектор азотом и конвертируя Ge в GeH4 перед счётом. Эти детекторы используют 30-100 тонн галлия и потребляют значительную долю ежегодного производства галлия.

Черенковские детекторы работают на эффекте рассеяния нейтрино заряженными частицами. После столкновения с нейтрино, выбитый электрон испускает черенковское излучение, которое можно зарегистрировать сцинтилляционными детекторами. Первый из таких детекторов был помещён в шахту Камиока в Японии. Супер Камиока содержал 50000 тонн высокочистой воды. Детектируемая реакция в этом случае – реакция рассеяния ν +e- →ν +e- , а порог детектирования 8 МэВ, что позволяет регистрировать8 В нейтрино.

Рис. 27. Сравнение предсказаний стандартной солнечной модели и экспериментальных измерений.

Канадский SNO детектор был смонтирован в никелевой шахте на глубине 2 км и содержал 1000 тонн тяжёлой воды (D2 O). В дополнении к нейтриноэлектронному рассеянию, этот детектор способен использовать ядерные реакции на дейтерии:

ν e+d→ 2p+e- (72)ν +d→ n+p+ν (73)

Последняя реакция может быть использована для регистрации всех типов нейтрино, ν е ,ν μ иν τ , тогда как первая реакция чувствительна только к электронным нейтрино. Набор протекающих в детекторе реакций можно использовать для наблюдения осцилляций нейтрино. В последней реакции, испущенный нейтрон детектируется (n ,γ) реакцией, в которой γ лучи регистрируются сцинтилляционным детектором (Тяжёловодный детектор окружён 7000 тон обычной воды, чтобы предохранить детектор от нейтронов, связанных с радиоактивностью стен шахты). Канадский детектор потребовал разработки новых методов глубокой очистки воды, т.к. чистота воды требовала содержание урана или тория менее 10 атомов на 1015 молекул воды.

6.3 Проблема солнечного нейтрино

Проблема солнечного нейтрино возникла из того факта, что детекторы зарегистрировали только 1/3 от ожидавшегося по стандартной модели солнечного нейтрино, которая предполагает, что 98,5% энергии Солнца происходит из рр -цепочки и 1,5 из CNO цикла.

Рис. 28 . Энергетические спектры галактических космических лучей, GCR.

Такое расхождение указывает, что или модель Солнца неверна или есть фундаментальные ошибки в использованной ядерной физике.

Проблема солнечного нейтрино заключается в ошибочных идеях о фундаментальной структуре вещества, задаваемых стандартной моделью. Стандартная модель предсказывает, что три типа нейтрино не имеют массы и что, будучи созданными, они продолжают существовать в неизменном виде всё остальное время. Основная идея альтернативной модели – модели осцилляции нейтрино – состоит в утверждении, что пока нейтрино выходят из Солнца, они трансформируются из электронных в мюонные нейтрино и обратно. Эти осцилляции

возможны, если нейтрино имеют массу и эта масса у электронного и мюонного нейтрино различны. Эти осцилляции усиливаются нейтрон-электронными взаимодействиями в Солнце. Полагают, что

масса τнейтрино>масса μ нейтрино>масса электронного нейтрино. Верхний предел этих масс

Рис. 29 . Относительная (по кремнию) распространённость элементов в солнечной системе и в космических лучах.

Нейтринные осцилляции - превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени. Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино. Предполагается, что такие превращения - следствие наличия у нейтрино массы покоя или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях. Стандартная модель в первоначальной версии не описывает массы нейтрино и их осцилляции, однако они могут быть включены в эту теорию с помощью сравнительно небольшой модификации - включении в общий лагранжиан массового члена и PMNS-матрицы смешивания нейтрино.

Прямое доказательство осцилляций нейтрино пришло из наблюдений черенковского свечения. SNO детектор нашёл одну треть ожидавшегося числа электронных нейтрино, приходящих из Солнца в согласии с предыдущими данными, полученными радиохимическими детекторами. Японский детектор, который чувствителен преимущественно к электронным нейтрино, но имеет

чувствительность и к другим типам нейтрино, нашёл половину от потока нейтрино, ожидавшегося из

В детстве я любил читать журнал «Наука и Жизнь», в деревне лежала подшивка начиная с 60-х годов. Там часто рассказывали про термоядерный синтез в радостном ключе - вот уже почти, и оно будет! Многие страны, чтобы успеть на раздачу бесплатной энергии строили у себя Токамаки (и настроили их суммарно 300 штук по всему миру).

Годы шли… Сейчас 2013-й год, а человечество до сих пор получает бОльшую часть энергии от сжигания угля, как в 19-м веке. Почему так получилось, что мешает создать термоядерный реактор, и чего нам ждать в будущем - под катом.

Теория

Ядро атома, как мы помним, состоит в первом приближении из протонов и нейтронов (=нуклонов). Для того, чтобы от атома оторвать все нейтроны и протоны - нужно затратить определенную энергию - энергию связи ядра. Эта энергия отличается у различных изотопов, и естественно, при ядерных реакциях баланс энергии должен сохраняться. Если построить график энергии связи для всех изотопов (из расчета на 1 нуклон), получим следующее:


Отсюда мы видим, что получать энергию мы можем или разделяя тяжелые атомы (вроде 235 U), или соединяя легкие.

Наиболее реалистичные и интересные в практическом отношении следующие реакции синтеза:

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV)
2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%
2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50%
3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV)
4) p+ 11 B -> 3 4 He + 8.7 MeV

В этих реакциях используется Дейтерий (D) - его можно получать прямо из морской воды, Тритий (T) - радиоактивный изотоп водорода, сейчас его получают как отход на обычных ядерных реакторах, можно специально производить из лития. Гелий-3 - вроде-бы на Луне, как мы все уже знаем. Бор-11 - природный бор на 80% состоит из бора-11. p (Протий, атом водорода) - обычный водород.

Для сравнения, при делении 235 U выделяется ~202.5 MeV энергии, т.е. гораздо больше чем при реакции синтеза из расчета на 1 атом (но из расчета на килограмм топлива - конечно термоядерное топливо дает больше энергии).

По реакциям 1 и 2 - получается много очень высокоэнергетических нейтронов, которые всю конструкцию реактора делают радиоактивной. А вот реакции 3 и 4 - «без-нейтронные» (aneutronic) - не дают наведенной радиации. К сожалению, побочные реакции все равно остаются, например из реакции 3 - дейтерий будет и сам с собой реагировать, и небольшое нейтронное излучение все-же будет.

Реакция 4 интересна тем, что в результате получаем 3 альфа-частицы, с которых теоретически можно напрямую энергию снимать (т.к. они фактически представляют собой движущиеся заряды = ток).

В общем, интересных реакций достаточно. Вопрос лишь в том, насколько просто их осуществить в реальности?

О сложности проведения реакции Человечество относительно легко освоило деление 235 U: никакой сложности тут нет - поскольку нейтроны не обладают зарядом, они могут буквально «проползать» сквозь ядро даже с очень маленькой скоростью. В большинстве реакторов деления и используются как раз такие, тепловые нейтроны - у которых скорость движения сравнима со скоростью теплового движения атомов.

А вот при реакции синтеза - у нас есть 2 ядра имеющие заряд, и они отталкиваются друг от друга. Для того, чтобы сблизить их на нужное для реакции расстояние - нужно, чтобы они двигались с достаточной скоростью. Скорости такой можно либо достичь в ускорителе (когда все атомы в результате двигаются с одной оптимальной скоростью), или нагреванием (когда атомы летают как попало в случайных направлениях и случайной скоростью).

Вот график, показывающий скорость реакции (сечение) в зависимости от скорости (=энергии) сталкивающихся атомов:

Вот то же, но построенное от температуры плазмы, с учетом того, что атомы там летают со случайной скоростью:


Сразу видим, что реакция D+T - самая «легкая» (ей нужны жалкие 100 миллионов градусов), D+D - примерно в 100 раз медленее при тех же температурах, D+ 3 He идет быстрее чем конкурирующая D+D только при температурах порядка 1 млрд градусов.

Таким образом, только реакция D+T хотя бы отдаленно доступна человеку, со всеми её недостатками (радиоактивность трития, сложности с его получением, наведенная нейтронами радиация).

Но как вы понимаете, взять и нагреть что-то до ста миллионов градусов и оставить реагировать не выйдет - любые нагретые предметы излучают свет, и таким образом быстро остывают. Плазма нагретая до сотни миллионов градусов - светит в рентгеновском диапазоне, и что самое печальное - она прозрачна для него. Т.е. плазма с такой температурой фатально быстро остывает, и чтобы поддерживать температуру нужно постоянно вкачивать гигантскую энергию на поддержание температуры.

Впрочем, из-за того, что в термоядерном реакторе газа очень мало (например в ITER - всего пол грамма), все получается не так плохо: чтобы нагреть 0.5г водорода до 100 млн градусов нужно потратить примерно столько же энергии, сколько для нагревания 186 литров воды на 100 градусов.

Проект завершился 30 сентября 2012 года. Оказалось, в компьютерной модели были неточности. По новой оценке, достигнутая в NIF мощность импульса 1.8 мегаджоуля - 33-50% от требуемой, чтобы выделилось столько же энергии, сколько было затрачено.

Sandy Z-machine Идея такая: возьмем большую кучу высоковольтных конденсаторов, и резко разрядим их через тоненькие вольфрамовые проволочки в центре машины. Проволочки мгновенно испаряются, через них продолжает течь огромный ток в 27 миллионов ампер на протяжении 95 наносекунд. Плазма, нагретая до миллионов и миллиардов(!) градусов - излучает рентгеновское излучение, и обжимает им капсулу с дейтерий-тритиевой смесью в центре (энергия импульса рентгеновского излучения - 2.7 мегаджоуля).

Планируется апгрейд системы с использованием российской силовой установки (Linear Transformer Driver - LTD). В 2013-м году ожидаются первые тесты, в которых получения энергия сравнится с затрачиваемой (Q=1). Возможно, у этого направления в будущем появится шанс сравниться и превзойти токамаки.

Dense Plasma Focus - DPF - «схлопывает» бегущую по электродам плазму с получением гигантских температур. В марте 2012 на установке, действующей по этому принципу была достигнута температура 1.8 млрд градусов.

Levitated Dipole - «вывернутый» токамак , в центре вакуумной камеры висит торообразный сверхпроводящий магнит который и удерживает плазму. В такой схеме плазма обещает быть стабильной сама по себе. Но финансирования у проекта сейчас нет, похоже непосредственно реакцию синтеза на установке не проводили.

Farnsworth–Hirsch fusor Идея проста - размещаем две сферические сетки в вакуумной камере наполненной дейтерием, или дейтерий-тритиевой смесью, прикладываем между ними потенциал в 50-200 тысяч вольт. В электрическом поле атомы начинают летать вокруг центра камеры, иногда сталкиваясь между собой.

Выход нейтронов есть, но он довольно мал. Большие потери энергии на тормозное рентгеновское излучение, внутренняя сетка быстро раскаляется и испаряется от столкновений с атомами и электронами. Хотя конструкция интересна с академической точки зрения (собрать её может любой студент), КПД генерации нейтронов намного ниже линейных ускорителей.

Polywell - хорошие напоминание о том, что не все работы по термоядерному синтезу публичны. Работа финансировалась ВМФ США, и была засекречена, пока не были получены отрицательные результаты.

Идея - развитие Farnsworth–Hirsch fusor. Центральный отрицательный электрод, с которым было больше всего проблем, мы заменяем облаком электронов, удерживаемых магнитным полем в центре камеры. Все тестовые модели имели обычные, а не сверхпроводящие магниты. Реакция давала единичные нейтроны. В общем, никакой революции. Возможно, увеличение размеров и сверхпроводящие магниты и изменили бы что-то.

Мюонный катализ - радикально отличающаяся идея. Берем отрицательно-заряженный мюон, и заменяем им электрон в атоме. Поскольку мюон в 207 раз тяжелее электрона - в молекуле водорода 2 атома будут намного ближе друг к другу, и произойдет реакция синтеза. Единственная проблема - если в результате реакции образуется гелий (шанс ~1%), и мюон улетит с ним - больше в реакциях он участвовать не сможет (т.к. гелий не образует химического соединения с водородом).

Проблема тут в том, что генерация мюона на данный момент требует больше энергии, чем может получится в цепочке реакций, и таким образом пока энергию тут не получить.

«Холодный» термоядерный синтез (сюда не включен «холодный» мюонный катализ) - давно является пастбищем псевдоученых. Научно подтвержденных и независимо повторяемых положительных результатов нет. А сенсации на уровне желтой прессы были уже не раз и до E-Cat-а Андреа Росси.

Включайся в дискуссию
Читайте также
Людмила Самотик - Лексика современного русского языка: учебное пособие
Ниндзя – супер шпионы средневековой Японии
Все, что вы хотели узнать о местоимениях, но не знали, как спросить Относительные и указательные местоимения правило